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Abstract 
Adding American Sign Language (ASL) animation to websites can improve information access for people who are deaf with low levels 
of English literacy. Given a script representing the sequence of ASL signs, we must generate an animation, but a challenge is selecting 
accurate speed and timing for the resulting animation. In this work, we analyzed motion-capture data recorded from human ASL signers 
to model the realistic timing of ASL movements, with a focus on where to insert prosodic breaks (pauses), based on the sentence syntax 
and other features. Our methodology includes extracting data from a pre-existing ASL corpus at our lab, selecting suitable features, and 
building machine learning models to predict where to insert pauses. We evaluated our model using cross-validation and compared various 
subsets of features. Our model had 80% accuracy at predicting pause locations, out-performing a baseline model on this task. 
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1. Introduction 
American Sign Language (ASL) is used as a primary means 
of communication for about one half million people 
(Mitchell et al., 2006). ASL is a natural language that 
consists of movements of the hands, head, body, and face 
to convey meaning, and it has its a syntax, word order, and 
lexicon which are distinct from spoken English. While 
there is great diversity in the English reading literacy skills 
among members of the Deaf community in the U.S., 
including some individuals with strong skills, there are also 
many individuals with lower English reading skills, due to 
reduced levels of language-exposure during childhood or 
other educational circumstances. In fact, standardized 
testing has shown that the majority of Deaf high school 
graduates in the U.S. (students who are completing 
secondary school, typically age 18) have English reading 
skills at the “fourth-grade” level (age 9 students in the U.S.) 
(Traxler, 2000). Because of the linguistic differences 
between ASL and English, there are people fluent in ASL 
but with difficulties reading English text.  

Amid these literacy issues, some English text on websites 
may be too difficult to read. While adding videos of a 
human signer to websites may sound like a simple solution, 
this is impractical: Online information is often updated or 
generated automatically based on a query. A video would 
need to be recorded and uploaded, which would be costly 
and time-consuming. Professional animators can produce 
realistic animations of virtual humans, but the process is 
also slow. For these reasons, many researchers, e.g. 
(Adamo-Villani and Wilbur, 2015; Cox et al., 2002; Ebling 
and Glauert, 2016; Huenerfauth, 2004; Jennings et al, 2010; 
Kacorri, 2016; Kennaway et al., 2007; Lu, 2014; 
McDonald et al. 2016; Segout and Braffort, 2009), 
investigate the development of software that can generate 
understandable ASL animations of a virtual human signer 
automatically from an easy-to-update script. The challenge 
is that this software must configure the animation so that 
the movements are accurate and easily understood by ASL 
signers (Huenerfauth, 2008; Huenerfauth and Lu, 2010). 

The primary focus of this paper is to investigate using 
motion-capture data that our lab has previously recorded 
from human signers to build predictive models for inserting 
pauses in ASL animations. Prior studies at our lab 
(Huenerfauth, 2009) have shown that adding linguistically 
motivated pauses and adjusting the duration of signs 
enhances the understandability of ASL animation (as 
measured on a comprehension task). Thus, our goal is to 
automate this aspect of animation synthesis and to create 
understandable ASL animation with better quality. 

2. Literature Review 
2.1 Linguistic Research on Pausing 
Some prior psycholinguistic studies have focused on the 
timing and pausing in ASL and spoken English (Grosjean 
and Lane, 1977; Grosjean, 1977; Grosjean et al., 1979). For 
example, Grosjean et al., (1979) investigated the pause 
length and location of pauses in ASL, based on the sentence 
structure. Others studied the sign duration and sign speed, 
based on video observation, and they analyzed speaker and 
signer performances at different rates (Grosjean, 1979). 
Grosjean and Lane (1977) found that for spoken English, 
longer pauses take place at sentence boundaries (pause 
length longer than 445 ms); shorter pauses take place 
between noun phrases, verb phrases and conjoined 
sentences (pause length range between 245 and 445 ms), 
and the shortest pauses occurred within phrasal constituents 
(pause length less than 245 ms).  For ASL, Grosjean and 
Lane (1977) analyzed videos to estimate an average pause 
length: between sentences (229 ms), between conjoined 
sentences (134 ms), pauses between noun or verb phrases 
(106 ms), within verb phrases (11 ms), and within noun 
phrases (6 ms). These findings suggested that pause length 
in ASL was related to the syntax structure of the sentence, 
and these findings have inspired the selection of features 
for our models, as discussed in section 4.2. 

2.2 Rule-Based Pausing for Signing Animation  
In some prior sign language animation systems, the speed 
and duration of signing are invariant or must be specified 
by a human authoring the message: The eSign project 
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developed an animated avatar that performed sequences of 
signs from a lexicon. To specify the duration of each word, 
the authors examined the speed of human signers in videos 
performing each sign (Kennaway et al., 2007), but they did 
not vary the duration of signs based on where they appeared 
in sentences. Sign Smith Studio was a commercial product 
for ASL animation generation; it allowed the user to 
modify the temporal parameters of the signs in a sentence 
manually (by adjusting numerical values for the transition 
time between words, the hold/pause at the end of words, 
and a multiplier factor for hand speed during the sign).  
Therefore, a Sign Smith Studio user needed some skill in 
computer animation and instincts about how to set 
numerical values for ASL timing (Vcom3D, 2017).  

Many projects have implemented sets of rules that govern 
the speed and timing of sign-language animations, e.g.:  

• Huenerfauth (2009) built a model for the duration 
(length) of signs, the location of pauses, and the length 
of pauses in ASL.  However, his model was based on 
rules he authored based on some published data in the 
psycholinguistics literature on ASL (summarized 
above in 2.1). He designed two algorithms: for 
calculating sign duration time and for calculating 
pause location and length.  His sign-duration algorithm 
depended on whether specific signs had previously 
appeared in a passage and whether they were at the end 
of clauses, e.g. noun signs located at boundaries 
(sentence or clause) were lengthened in duration by a 
set percentage (12% and 8% respectively).  For verb 
signs, subsequent occurrences were shortened in 
duration by 12%. The values used in these rules were 
based on averages reported in the linguistics literature, 
not on any data-driven machine-learning method. 

• A more recent study by Villani and Wilbur (2015) also 
utilized a rule-based approach. Their system predicted 
how to add prosodic enhancements to ASL animations, 
including insertion of pauses and phrase-final 
lengthening of sign duration. To determine Pausing, 
Villani and Wilbur adopted linguistic values from 
(Pfau et al., 2005) to insert pauses between and within 
sentences. Regarding Phrase Final Lengthening, they 
increased the length of the last sign of a phrase based 
on a prior study by Wilbur (2009). Their initial user 
evaluation showed promising results from using this 
algorithmic approach to add prosodic features.  

• Ebling and Glauert (2016) built a system for 
translating train announcements from German text to 
Swiss German Sign Language using the JASigning 
animation platform. The authors wrote a rule to insert 
a short pause after each item in lists, based on a 
suggestion from deaf users who viewed their system’s 
animation output; however, they did not provide a 
general rule for when pauses should be inserted nor 
what the pause duration should be, in novel contexts. 

2.3 Data-Driven Sign Language Research  
While many advances in computational linguistics have 
come from data-driven methods based on machine-learning 
models, most prior work on sign language has been rule-
based, because of the small quantity of training data, e.g. 
available audio/video recordings that have been 
linguistically-annotated. As additional signing corpora 

have recently become available, there has been a recent 
trend among sign-language researchers of applying data-
driven approaches, as discussed in (Huenerfauth, 2014). 
For instance, various researchers have examined data-
driven methods for sign language translation research:  

• Bungeroth et al. (2006) created a corpus for German 
Sign Language and studied machine-translation and 
facial-expression issues, but not speed or timing.   

• Morrissey and Way (2005) investigated example-
based machine translation approaches for producing 
sign language from English text, using a corpus they 
annotated with manual and non-manual features. They 
generated word sequences for sign language, not any 
animation output, which would have required speed or 
timing information (Morrissey and Way, 2005). Most 
of these prior studies made use of small corpora 
containing texts on a special topic/domain, and none of 
them explicitly modeled speed and pausing of signs. 

• Naert et al (2017) investigated automatically adjusting 
manual segmentation of sign language motion data. 

Some researchers have used data-recordings from humans 
to generate animation output, for example:  

• Segouat and Braffort (2009) used rotoscopy to create a 
French Sign Language corpus and built an animation 
system that combined different elements of human 
motion to create novel sentences. While they studied 
co-articulation (how the movements at the end of one 
sign are influenced by the beginning of the next), they 
did not model speed or timing issues directly.  

• Cox et al. (2002) built and evaluated a system called 
“TESSA” for converting English speech to British 
Sign Language (BSL) animations, using some 
template-like phrases to build a limited set of sign 
language sentences. Since their system filled words 
into templates (rather than synthesizing complete 
phrases), they did not address timing and pausing 
issues, which is the focus of our current work. 

• In prior work, our lab has used our ASL Motion-
Capture Corpus (Lu and Huenerfauth, 2012; 2014) to 
investigate different aspects of ASL animation: 
inflecting verb movement (Lu, 2014), facial 
expression (Kacorri, 2016), and spatial reference point 
locations (Gohel, 2016). 

3. Research Question 
While there has been prior translation and animation-
synthesis research that has utilized data-driven techniques, 
as described above, there has not been prior work that has 
utilized motion-capture corpora of ASL to directly train 
machine-learning models of speed, timing, or pause-
insertion. Given the success of these prior projects 
(focusing on other aspects of animation) at using motion-
capture recordings to build models of how human ASL 
signers behave, we therefore intend to use a similar method 
to investigate the following research question:  

Research Question: Can we accurately predict where 
human signers insert pauses in their ASL signing, as 
evaluated via cross-validation on an annotated corpus of 
human ASL signing? 
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4. Methodology 

4.1 Data Preparation  
To support our modeling work, we first needed to process 
and extract relevant information from our existing ASL 
Motion-Capture Corpus (Lu and Huenerfauth, 2014), 
which contains: motion-capture movement data available 
as .bvh files (Biovision hierarchical data, XML files 
representing human joint angles from a movement 
recording) and linguistic annotation (text files exported 
from the SignStream annotation tool (Neidle, 2002). A 
team of annotators that included Deaf native ASL signers 
and linguists, labeled the glosses and syntactic constituents 
(including sentence, clause, verb phrase, and noun phrase 
boundaries) in the ASL video and motion-capture corpus, 
using a process whereby two annotators independently 
annotated each file and met to discuss their annotations to 
arrive at a consensus annotation. The annotation included 
word labels, clause boundaries, and other syntactic 
information (Lu and Huenerfauth, 2014).   

To process this data for our analysis, we wrote Python code 
to extract timing information and a subset of linguistic 
annotation properties to produce a comma-separated values 
(CSV) file with each row representing an inter-word “gap” 
location, after each of the 7138 words in the corpus, where 
a prosodic pause could potentially occur. One column was 
a “target” label that indicated whether this gap location in 
the corpus was where the human performed a “pause.”  

Since the original linguistic annotators did not specifically 
label which inter-sign gaps contained a prosodic pause and 
which did not, we needed to fill this value automatically:  
by identifying a threshold time duration to distinguish 
between regular end-of-sign “holds” (some signs end with 
the hands remaining in position for a moment) and longer 
prosodic-break “pauses” during signing. To calculate this 
threshold, we calculated mean hold time at the end of 
words, and we subtracted this value from the period of time 
when the hands were motionless at the end of words. After 
ranking these durations, we labeled the longest 25% as 
“pauses” and the remainder as “not pauses,” following the 
typical ASL ratio of prosodic pauses in (Grosjean, 1979). 

4.2 Feature Engineering 
The remaining columns contain “predictor features,” i.e. 
properties about this gap location (e.g., is this inter-sign gap 

a boundary between two sentences, what is the length of 
the current sentence, etc.) that may be relevant to predicting 
pauses. These features were calculated automatically from 
annotation present in the original corpus. In summary, our 
training data set consisted of nine predictor columns and 
one target column; there were 7138 rows representing gap 
locations after each ASL sign. Table 1 lists the predictor 
features implemented in this work and explains their 
meaning. The various boundary, relative proximity, and 
complexity index features listed in the table were included 
based on their use in determining pauses in prior linguistic 
work (Huenerfauth, 2009; Grosjean et al., 1979). As 
mentioned in Table 2, detailed formulas for some of these 
features are described in Huenerfauth (2009), as they were 
a key part of that prior rule-based model. All of the 
numerical features were scaled using unity-based 
normalization with the training minimum and maximum. 

The reader may note that none of the features included in 
our model were lexically specific, i.e. they did not depend 
on the specific gloss/word labels for the individual signs 
that preceded or followed any inter-sign gap.  This decision 
to avoid lexically-specific features was intentional, given 
the relatively small size of our training corpus. 
Furthermore, a small set of prompts had been used in the 
collection of this corpus (Huenerfauth and Lu, 2014); thus, 
we sought to avoid training a model of pause insertion that 
would be overly domain specific, given our limited data. 

4.3 Selecting the Classification Models 
Since our goal was to fit and test a model to predict pause 
locations in ASL animation and our target variable had 
values of (“there is a pause here” or “there is not a pause 
here”), we considered a traditional supervised classification 
approach to make an individualized prediction for the gap 
following each word in a sentence. Since we had both 
categorical and numerical predictor features (see the 
“Type” column in Table 1), we chose to investigate and 
compare several machine-learning algorithms that support 
mixed features, including: decision trees, support vector 
machines (SVM). In particular, we noted that prior work on 
pause prediction for English (Sarkar and Rao, 2015) or 
other modeling for ASL (Shibata et al., 2016) had 
successfully used decision-tree-based learning methods. 

To select the optimal subset of features to use when 
building our model, we implemented code to exhaustively 
build and test versions of each model using all possible 

Table 1: Detailed information about selected features 
Feature name Explanation Type 

Sentence Boundary (SB), 
Clause Boundary (CB), 

Noun Phrase Boundary (NPB), 
Verb Phrase Boundary (VPB) 

Is this inter-sign gap at the boundary of a sentence, clause, noun 
phrase or a verb phrase? 

Categorical: 
{Yes, No} 

Relative Proximity (RP) How far is this inter-sign gap from midpoint of the current 
sentence?  A detailed formula for calculating this value appears 

in Huenerfauth (2009). 

Numerical 

Complexity Index (CI) The number of syntactic nodes that dominated this inter-sign gap.  
A detailed formula for calculating this value appears in 

Huenerfauth (2009). 

Numerical 

Sentence Length (SL), Noun Phrase 
Length (NPL), Verb Phrase Length 

(VPL) 

Number of words in the current sentence, the current noun phrase 
(if applicable), or the current verb phrase (if applicable) at this 

inter-sign gap position in the corpus. 

Numerical 
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combinations of our predictor features, for a total of 511 
different feature subsets. We trained a decision tree 
classifier (using a maximum of 100 branch nodes) and an 
SVM Linear classifier in MATLAB (MathWorks, 2017). 

Aside from making independent predictions of the target 
variable (“pause” or “no pause”) for each inter-sign gap 
location, we also investigated if there were dependencies 
between the values at subsequent gap locations. 
Specifically, we considered making predictions based on a 
+/-1 context window (i.e. the predictor features of the inter-
sign gap immediately preceding and following the current 
inter-sign gap), thereby treating the problem as a sequence-
tagging problem. For this purpose, we trained a Linear-
Chain Conditional Random Field (CRF) model which 
operated on the context-features and looked for the most 
optimal path through all possible target sequences for a 
sequence of words in a sentence.  

4.4 Cross-Validation Training and Evaluation 
For the classifiers described above, we implemented a 5-
fold cross-validation procedure, dividing our data into 80% 
training set and 20% testing set at each evaluation fold. We 
calculated the average accuracy and f-score across the 5 
folds. To select the best working parameters for each of our 
models, we performed a grid-search to optimize the model 
performance. We compared our result with some baselines: 

• Baseline 1: We inserted a pause at the end of every 
sentence (and nowhere else). The rationale is that if a 
human were to create an animation and manually chose 
to insert some pauses, the animator may likely put them 
at all of the sentence boundaries, as a simple approach. 

• Baseline 2: We inserted a pause randomly at 25% of 
locations. To account for variation due to randomness, 
we ran it ten times (Table 2 presents the average). 

5. Results Analysis 
Table 2 shows the accuracy and f-score for each model with 
best the performing feature combinations. As shown in the 
table, Baseline 1 (which inserted a pause at all sentence 
boundaries) has good performance – which is expected as 
many pauses do occur at the end of sentences.  

Table 2: Results of Each Pause-Prediction Classifier 
Classifier Accuracy F-Score  Features 

Linear-Chain CRF 0.80 0: 0.298 
1: 0.880 

ALL 

Decision Tree   0.76 0: 0.226 
1: 0.858 

CB, VPB 

SVM (Linear) 0.76 0: 0.160 
1: 0.868 

CB, VPB 

Baseline 1 0.77 0: 0.392 
1: 0.860 

SB 

Baseline 2 0.64 0: 0.227 
1: 0.768 

N/A 

 
The SVM and Decision-tree models, which utilized 
features from the current inter-sign gap only, struggled to 
beat this baseline, in both accuracy and f-score. The linear-
chain CRF model was our top performing model, with an 
                                                             
1https://www.mathworks.com/products/statistics/classification-
learner.html 

accuracy of 80% and F-score comparable in performance 
to (and slightly exceeding) the Baseline 1. 

6. Conclusions 
In this work, we demonstrated our methodology for 
building models of one aspect of ASL animation timing, 
based on machine-learning modeling of a collection of 
motion-capture data. Specifically, our work has focused on 
building models of where people pause during signing, and 
we have successfully identified a set of features and a 
modeling approach that outperforms a commonly-used 
baseline for pause-placement (i.e. insert a pause at every 
sentence boundary). Notably, we have presented a model 
that utilizes a set of features related to the syntax structure 
of a sentence (rather than utilizing lexically specific 
features, such as word labels), which has enabled us to 
make use of a relatively small corpus to train our model.   

We envision that this model could be incorporated as part 
of a system for automatically synthesizing animations of 
sign language, with the assumption that such a system is 
aware of the location of syntactic phrase boundaries during 
the generation of sentences (which is the basis for all 
features listed in Table 1), and thereby our model could 
utilize this information to automatically determine where to 
insert pauses in the resulting sign-language animation. 

In future work, we plan to investigate additional predictive 
features and modeling techniques for this task, and to 
conduct a user-based study (with ASL signers evaluating 
the quality of animations resulting from this model). In 
subsequent work, we plan to investigate models of the 
duration (length) of both pauses and individual signs, with 
an ultimate goal of building software that can generate 
realistic and understandable animations of ASL, to make 
information more accessible for ASL signers who may 
prefer to receive information in the form of sign language 
or may have reduced reading literacy in written language. 

7. Appendix 
The Decision Tree and SVM classifiers were implemented 
in MATLAB using the Classifier Learner Package1, while 
the Linear-Chain CRF classifier was implemented using 
the sklearn-crfsuite2 package in Python. Table 3 displays 
the parameter settings used to build the respective models. 

Table 3: Parameters for machine-learning models  
Classifier Function Parameters 
Linear-Chain 
CRF 

CRF algorithm: l2sgd 
c2: 0.0869 
max_iterations: 100 
all_possible_transitition: 
True 

Decision Tree fitctree SplitCriterion: gdi 
MaxNumSplits: 100 
Surrogate: off 

SVM (Linear) fitcsvm 
 

KernelFunction: linear 
PolynomialOrder: [] 
KernelScale: auto 
BoxConstraint: 1 

2 https://sklearn-crfsuite.readthedocs.io/en/latest/ 
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