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Abstract

Computer-based sign language recognition from video is a challenging problem because of the spatiotemporal complexities inherent in
sign production and the variations within and across signers. However, linguistic information can help constrain sign recognition to make
it a more feasible classification problem. We have previously explored recognition of linguistically significant 3D hand configurations,
as start and end handshapes represent one major component of signs; others include hand orientation, place of articulation in space,
and movement. Thus, although recognition of handshapes (on one or both hands) at the start and end of a sign is essential for sign
identification, it is not sufficient. Analysis of hand and arm movement trajectories can provide additional information critical for sign
identification. In order to test the discriminative potential of the hand motion analysis, we performed sign recognition based exclusively
on hand trajectories while holding the handshape constant. To facilitate this evaluation, we captured a collection of videos involving signs
with a constant handshape produced by multiple subjects; and we automatically annotated the 3D motion trajectories. 3D hand locations
are normalized in accordance with invariant properties of ASL movements. We trained time-series learning-based models for different
signs of constant handshape in our dataset using the normalized 3D motion trajectories. Results show significant computer-based sign
recognition accuracy across subjects and across a diverse set of signs. Our framework demonstrates the discriminative power and
importance of 3D hand motion trajectories for sign recognition, given known handshapes.
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1. Introduction

Recognizing a large set of ASL signs is a difficult chal-
lenge when posed strictly as a computer vision classifica-
tion problem. Classification would require vast amounts of
training data representing a range of subject-specific sign-
ing variations. However, top-down linguistic knowledge
imposed on the data analysis can help constrain the prob-
lem in order to make learning and sign recognition more
feasible.

We have previously achieved high accuracy with respect to
handshape recognition from video (Dilsizian et al., 2014).
However, for frequently occurring combinations of start
and end handshapes, there are large numbers of signs that
have those handshapes in common. In the current study,
the set of 3D hand configurations has been limited to a set
of linguistically important ASL handshapes appropriate for
sign recognition.

We demonstrate here that analysis of movement trajecto-
ries allows us to achieve high rates of accuracy in discrim-
inating among signs, holding the start and end handshape
constant. Thus we expect that combining the techniques re-
ported here with our prior work on handshape recognition
will allow us to achieve high accuracy in identification of
specific signs.

2. Related Work

Sign recognition has been approached by Vogler et
al. (Vogler and Metaxas, 1998; Vogler and Metaxas, 2003)
as a time-series modeling problem using Hidden Markov
Models (HMMs) over 3D hand models. However, this work
is limited to a small vocabulary and laboratory conditions

Other works attempt to recognize signs from real world
video. The work in (Ding and Martinez, 2007; Ding and
Martinez, 2009) attempts to incorporate modeling of mo-
tion trajectories with face and hand configuration recogni-
tion. However these works are limited to 2D trajectories
and fail to build a stochastic model of the sign that can
leverage phonological constraints or inter-subject variation.

Cui et al. (Cui and Weng, 2000) monitor changes in hand
observations over time in an attempt to capture spatiotem-
poral events; signs are then classified with respect to these
events. In addition, (Buehler et al., 2009) recognize signs
by matching windowed video sequences. Although, some
success has been achieved, sign recognition research to date
has failed to model different components of signs in order
to fully leverage important linguistic information.

Some works focus entirely on handshape recognition as
an intermediate step to sign recognition. Handshapes
are recognized in 2D using nearest neighbor classification
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in (Potamias and Athitsos, 2008). (Thangali et al., 2011)
achieve improvements in handshape recognition by model-
ing phonological constraints between start and end hand-
shapes, but handshape estimation is limited to 2 dimen-
sions. The handshape model is extended to 3 dimensions
with significant improvement in handshape recognition ac-
curacy in (Dilsizian et al., 2014). While these works show
good recognition accuracy for handshape, this research has
not yet been extended to full sign recognition/identification
because of the existence of potentially large numbers of
signs with the same start and end handshape pairs.

Although handshape-dependent upper body trajectories
have not been previously explored in the literature, 3D
human pose and upper-body estimation has been studied
extensively. Several generative (Isard and Blake, 1998;
Deutscher et al., 2000; Sigal et al., 2004; Bălan et al.,
2007) as well as discriminative (Rosales and Sclaroff, 2001;
Sminchisescu et al., 2007; Agarwal and Triggs, 2004; Sigal
et al., 2007) methods exist for 3D human pose prediction.
These works attempt to model multi-valuedness (ambigui-
ties) in mappings from 2D images to 3D poses (Rosales and
Sclaroff, 2001; Sminchisescu et al., 2007; Sigal et al., 2007)
and employ coarser, global features (Agarwal and Triggs,
2004; Sminchisescu et al., 2007; Sigal et al., 2007) such as
silhouette shapes, to generalize the trained models to dif-
ferent scenarios.

Alternatively, (Ferrari et al., 2008) proposed an algorithm
to localize upper body parts in 2D images using a coarse-
to-fine approach. Humans are coarsely detected using cur-
rent human detectors. Foreground is extracted within the
bounding box using grabcut. The work uses edge-based
soft detectors (Yang and Ramanan, 2013) to first detect the
torso and head and other parts. The appearance is learned
from the detected parts and used to detect further parts us-
ing a MAP optimization. The method is extended to spa-
tiotemporal parsing. Anthropometric priors have been ex-
tensively applied to constrain this problem.

However, both discriminative methods and the 2D-part
based approaches are highly dependent on the use of train-
ing data. Because very little 3D upper body trajectory data
of ASL signing exists, we are unable to sufficiently train
state-of-the-art pose estimation methods.

3. 3D Hand Tracking Dataset

As is well known, along with handshapes, orientation, and
place of articulation in space, movement trajectories are
an essential component of signs, and thus computer-based
recognition of motion patterns is essential for automatic
sign recognition. In order to test the ability of a com-
puter vision system to access this discriminative informa-
tion, we recorded a dataset of 3D upper body motion tra-
jectories across multiple signs and subjects, holding hand-
shapes constant.

3.1. Data Collection

ASL signers

Five ASL signers were recruited on the campus of the
Rochester Institute of Technology (home of the National
Technical Institute of the Deaf) and from the surrounding
community in Rochester, NY, using social media advertis-
ing. The participants included 2 men and 3 women, ages
21-32 (mean 24.2). Participants were recorded in a video
studio space using a KinectTM v2 camera system and cus-
tom recording software developed at Rutgers University, as
described below. A total of 3,627 sign productions were
recorded (about 25 tokens each of 139 distinct signs). Be-
cause of time limitations, however, for this paper data from
2 signers were prioritized for processing and analysis. The
entire set of subjects will be analyzed and discussed in the
LREC presentation.

Recording of Motion Trajectories

The Microsoft KinectTM v2 provides a robust platform for
recording 3D upper body joint configurations combined
with calibrated 2D color video data. We developed a tool
for recording and automatic annotation of joint locations
for different ASL signs (see Figure 1).

Figure 1: ASL trajectory recording software developed to
capture a dataset of 3D ASL movements.

Stimuli

We considered the most common handshapes for 2-handed
signs with the same handshapes on both hands through-
out the sign production. The signers were recorded as
they reproduced two-handed ASL signs shown to them in a
video recording of signs from the ASLLVD data set (Nei-
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dle et al., 2012) (http://secrets.rutgers.edu/
dai/queryPages/) with one of three common hand-
shapes used at both the beginning and end of the sign (the
B-L, 1, and 5) varying in their motion trajectories.1 The
B-L, 1, and 5 handshapes are illustrated in Figure 2.

3.2. 3D Tracking and Refinement

Because tracking from the KinectTM v2 sensor is based on a
trained discriminative model (Shotton et al., 2013), it is op-
timized for average case performance. In order to capture
subtle discriminative cues in the motion, we refine the out-
put of the camera by taking a cloud of neighboring depth
points around each predicted joint location. We constrain
each joint to lie near the center-of-mass of its neighbor-
hood. We also smooth these predictions using a Kalman
filter.

4. Sign Classification

In order to train a model for the trajectories of different
signs, we must ensure that our modeling is invariant to sev-
eral factors: (1) variation in sign production (signing style);
(2) variations in body proportion between different sub-
jects; and (3) noise in 3D tracking data.

4.1. Normalizing Motion Trajectories

Improved invariance to different anthropomorphic propor-
tions and ranges of movement can be achieved by normaliz-
ing the 3D motion trajectories. First, trajectories are trans-

1Signs were generated by 5 subjects performing
approximately 5 examples of each of the ASL signs
glossed in the BU ASLLRP corpora (Neidle et al., 2012)
(http://secrets.rutgers.edu/dai/queryPages/)
as follows: (1)GO-STEADY++, (1)WHEELCHAIR, (1h)HAPPY,

(5)WEATHER, (Vulcan)FILE, ABSTRACT+, AFTERNOON, AGREE,

ALLERGY, ALL-RIGHT, ALSO, ANSWER, APPLAUSE, ARRIVE, AVERAGE,

BALANCE, BEACH, BECOME, BELOW, BETWEEN/SHARE, BLOOD,

BOAT, BOIL, BOTHER++, BOX 2, BREAK-DOWN-BUILDING, BRING-

1p, BUT, CALM-DOWN, CHEAP, CHILD, CLOSE-WINDOW, COME,

CONFLICT/INTERSECTION, COOKING, COOL, CORRECT, CRACK,

CYCLE, DEAF-APPLAUSE, DEPEND, DIE, DISAGREE, DIVE, DONT,

DURING/WHILE, EASY+, EMBARRASS, END, EVERY-MONTH/RENT,

FALL-INTO-PLACE, FAT, FINALLY, FINGERS, FIRE, FOCUS/NARROW,

FOOTSTEP, FRESHMAN 3, FRIENDLY, GENERAL, GENERATIONS-AGO,

GLORY, GLOVES 2, GO, GRAY, HALL, HANDS, HARP, HERE+, HUMBLE,

INSPIRE, JUNIOR 3, KNIFE, LAPTOP, LEAVE-THERE, LIFT, LOUDSPEAKER,

MARCHING, MAYBE, MERGE/MAINSTREAM, MOOSE, MOTIVATE, MUSIC,

NECKLACE, NEXT-TO, NOISE, OBSCURE, OFTEN+++, ONE-MONTH,

OPPOSITE, PANCAKE, PARALLEL, PERSON, PIMPLES, PLEASE/(1h)ENJOY,

POPE, PREGNANT, PROGRESS++, PSYCHOLOGY, PUSH, RAIN, REFLECT,

REJECT, REQUEST, ROAD, SAD, SCARE, SENIOR, SIGN, SKYSCRAPER,

SLOW, SMILE, SOCKS, SPANK, SPIN, STAR, STEEP, STOP, SUCCEED,

SUNDAY 2, SWIM, TAP-DANCE, THING, THROAT-HURT, TORNADO,

TRAFFIC, TRAVEL, VACATION, VARY, WAIST, WALK, WASH-DISH,

WASH-HANDS, WATER-RISE, WEAVE, WHAT, WHEN, WIND, WRAP.

Figure 2: The B-L (top), 1 (middle), and 5 (bottom) hand-
shapes.

formed to a common world coordinate system by comput-
ing joint locations as the relative distance from the root po-
sition (located approximately between the hips).

Second, since it is also important that our model be invari-
ant to differences in the ranges of movement across dif-
ferent subjects. Rather than normalizing according to the
overall movement of each trajectory, we normalize over the
average range of both left and right hands per subject; this
ensures that we preserve the relative range of movement
between the left and right hands. An example is shown
in Figure 3 for the sign DARK. The bottom row shows the
significant reduction of the variance between 2 subjects that
results from use of our normalization methodology.

4.2. Training Sign Trajectory Models

In order to overcome noise in 3D hand tracking and vari-
ations in signing style, we must learn a robust model that
avoids over-fitting to noise or insignificant variation.

The Hidden Markov Model (HMM) has been very popu-
lar in the machine learning community and widely applied
to speech recognition, part-of-speech tagging, handwriting
recognition, bioinformatics, and ASL recognition (Vogler
and Metaxas, 1998). HMMs assume that a signing se-
quence is a Markov process describing how hand locations
change through the sign production. A number of states are
used to represent different parts of the signing action. These
states are not directly visible. Instead, they are perceived
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(a) (b)

(c) (d)

Figure 3: 3D wrist trajectories ({X,Y,Z} Euclidean locations) comparing multiple productions of the ASL sign glossed as
DARK by each of two signers. The top row, (a) and (b), shows the original data space with evident variations between
subjects with respect to sign production and anthropomorphic proportions. The Bottom Row, (c) and (d), shows the
normalized data space which maximizes inter-subject overlap of trajectories. Note: the PDF file of this paper contains
interactive 3D content accessible by clicking on the figure.

indirectly through depth image observations. An observa-
tion likelihood distribution models the relationship between
the states and the observation.This likelihood distribution is
represented by a mixture-of-Gaussian(MoG) density func-
tion, which is a combination of several Gaussian distribu-
tion components. Based on the previous state and the cur-
rent observation, the HMM may switch from one state to
another. During training, the number of states and the num-
ber of components in the mixture-of-Gaussian likelihood
distribution are chosen using a model selection method
known as the Bayesian Information Criterion (BIC). This
BIC technique selects the optimal model that best describes
the statistics of the training data while avoiding over-fitting.
Therefore, using using the BIC technique allows for im-
proved generalization to previously unseen test data.

In order to classify a given sign, we train a Support Vec-
tor Machine Hidden Markov Model (SVM-HMM) (Altun
et al., 2003). The SVM-HMM is a discriminative sequence

labeling model that combines the advantages of HMM and
SVM by assuming Markov chain dependency structure be-
tween labels and using dynamic programming for optimal
inference and learning. At the same time, the learning is
based on a discriminative, maximum margin principle that
can account for overlapping features. Moreover, unlike
HMMs, it can learn the non-linear discriminant functions
using kernel-based inputs. An SVM-HMM is trained for
each sign which can best be discriminated from all other
motion trajectories. This model implicitly captures proper-
ties of the motion that are invariant across different exam-
ples of the same sign.

5. Results

We train an SVM-HMM for each sign (with constant hand-
shape) and use cross-validation and a two-tailed signifi-
cance test to determine the parameters (states and Gaussian
mixture components) of our SVM-HMMs. Sign labels are
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assigned to each test sequence according to the SVM-HMM
that returns the minimum log-likelihood indicating that the
sequence belongs to a trained sign trajectory.

Despite the fact that the sample included some signs with
relatively similar motion patterns, we were able to discrim-
inate among these signs with an average of 78.0% accuracy
(with cross-validated 50/50 training/testing split). Accu-
racy by handshape is shown in Table 1.

Handshape Signs Trained/Tested Accuracy (%)

B-L 67 75.7
1 35 80.2
5 37 80.3

Table 1: Percent accuracy and number of signs trained and
tested (5-10 examples per subject)

While initial results leave some room for improvement, the
correct sign classification is located in the top 3 ranked esti-
mations in 96.1% of test examples. We have only used data
thus far from two of the subjects. As additional subjects
are incorporated into the SVM-HMM model, more general
and robust discrimination should be possible. Moreover,
additional information from the upper body tracking (i.e.
limb locations, body leaning, etc.) can be integrated to im-
prove recognition rates. Overall, the trajectory classifica-
tion results suggest that a complete sign language recogni-
tion framework is feasible when this approach is combined
with previously demonstrated handshape recognition.

In order to test the robustness of our modeling, we also
tested with different percentages of training and testing
splits (10−90%) using cross-validation on 30 common B-L
signs. Results across different sized training sets are shown
in Figure 4. The stability in sign recognition accuracy even
for low percentages of training data suggests that our ap-
proach is scalable and can discriminate among signs even
when trained on a small set of examples. This is a necessary
and critical property to any framework that seeks to scale to
a significantly large set of signs and variations.

6. Conclusion

We show here that modeling movement trajectories of the
hands provides important information that can be combined
with previously demonstrated handshape recognition for
purposes of discriminating among ASL signs. We chose
a sample of 139 signs that have the most common com-
bination of start and end handshape for 2-handed signs
(i.e., signs that use the so-called B-L, 1, and 5 handshapes)
throughout the articulation of the sign. We demonstrate a
framework and methodology for classifying signs accord-
ing to 3D motion trajectories.

The next step is to extend this method to construct a full

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

Percent of Data used for Training (%)

Pe
rc

en
tE

rr
or

(%
)

Figure 4: Sign recognition error rates across 30 signs (2-
handed B-L handshape) and 2 subjects for different sized
training and testing sets.

system for sign recognition/identification from video based
on a combination of the methods that we have developed for
(1) handshape recognition and (2) analysis of motion trajec-
tories. We plan to report on the extension of these prelimi-
nary results to larger sets of signs with varying handshapes
and motion trajectories, and larger numbers of signers, in
the LREC presentation.
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Bălan, A. O., Sigal, L., Black, M. J., Davis, J. E., and
Haussecker, H. W. (2007). Detailed Human Shape and
Pose from Images. In Computer Vision and Pattern
Recognition (CVPR), pages 1–8. IEEE.

Buehler, P., Zisserman, A., and Everingham, M. (2009).
Learning Sign Language by Watching TV (using Weakly
Aligned Subtitles). In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 2961–2968. IEEE.

Cui, Y. and Weng, J. (2000). Appearance-based Hand Sign
Recognition from Intensity Image Sequences. Computer
Vision and Image Understanding, 78(2):157–176.

Deutscher, J., Blake, A., and Reid, I. (2000). Articulated
Body Motion Capture by Annealed Particle Filtering. In
Computer Vision and Pattern Recognition (CVPR), vol-
ume 2, pages 126–133. IEEE.

Dilsizian, M., Yanovich, P., Wang, S., Neidle, C., and
Metaxas, D. N. (2014). A New Framework for Sign

57



Language Recognition based on 3D Handshape Identifi-
cation and Linguistic Modeling. In LREC, pages 1924–
1929.

Ding, L. and Martinez, A. M. (2007). Recovering the Lin-
guistic Components of the Manual Signs in American
Sign Language. In Advanced Video and Signal Based
Surveillance, 2007. AVSS 2007. IEEE Conference on,
pages 447–452. IEEE.

Ding, L. and Martinez, A. M. (2009). Modeling and
Recognition of the Linguistic Components in Amer-
ican Sign Language. Image and vision computing,
27(12):1826–1844.

Ferrari, V., Marin-Jimenez, M., and Zisserman, A. (2008).
Progressive Search Space Reduction for Human Pose Es-
timation. In Computer Vision and Pattern Recognition
(CVPR), pages 1–8. IEEE.

Isard, M. and Blake, A. (1998). Condensation - conditional
Density Propagation for Visual Tracking. International
Journal of Computer Vision, 29(1):5–28.

Neidle, C., Thangali, A., and Sclaroff, S. (2012). Chal-
lenges in Development of the American Sign Language
Lexicon Video Dataset (ASLLVD) Corpus. In Proceed-
ings of the 5th Workshop on the Representation and Pro-
cessing of Sign Languages: Interactions between Corpus
and Lexicon, LREC 2012, Istanbul, Turkey.

Potamias, M. and Athitsos, V. (2008). Nearest Neighbor
Search Methods for Handshape Recognition. In Pro-
ceedings of the 1st international conference on PEr-
vasive Technologies Related to Assistive Environments,
page 30. ACM.

Rosales, R. and Sclaroff, S. (2001). Learning Body Pose
via Specialized Maps. In Advances in Neural Informa-
tion Processing Systems, pages 1263–1270.

Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finoc-
chio, M., Blake, A., Cook, M., and Moore, R. (2013).
Real-time Human Pose Recognition in Parts from Single
Depth Images. Communications of the ACM, 56(1):116–
124.

Sigal, L., Bhatia, S., Roth, S., Black, M. J., and Isard, M.
(2004). Tracking Loose-limbed People. In Computer Vi-
sion and Pattern Recognition (CVPR), volume 1, pages
I–421. IEEE.

Sigal, L., Balan, A., and Black, M. J. (2007). Com-
bined Discriminative and Generative Articulated Pose
and Non-rigid Shape Estimation. In Advances in Neural
Information Processing Systems, pages 1337–1344.

Sminchisescu, C., Kanaujia, A., and Metaxas, D. N.
(2007). BM3E: Discriminative Density Propagation for
Visual Tracking. Pattern Analysis and Machine Intelli-
gence (PAMI), 29(11):2030–2044.

Thangali, A., Nash, J. P., Sclaroff, S., and Neidle, C.
(2011). Exploiting Phonological Constraints for Hand-
shape Inference in ASL Video. In Computer Vision and

Pattern Recognition (CVPR), 2011 IEEE Conference on,
pages 521–528. IEEE.

Vogler, C. and Metaxas, D. (1998). ASL Recognition
Based on a Coupling between HMMs and 3D Motion
Analysis. In Computer Vision, 1998. Sixth International
Conference on, pages 363–369. IEEE.

Vogler, C. and Metaxas, D. (2003). Handshapes and
Movements: Multiple-channel American Sign Language
Recognition. In Gesture workshop, volume 2915, pages
247–258. Springer.

Yang, Y. and Ramanan, D. (2013). Articulated human
detection with flexible mixtures of parts. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on,
35(12):2878–2890.

58


