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Abstract
Automatic and unconstrained sign language recognition (SLR) in image sequences remains a challenging problem. The variety of
signers, backgrounds, sign executions and signer positions makes the development of SLR systems very challenging. Current methods
try to alleviate this complexity by extracting engineered features to detect hand shapes, hand trajectories and facial expressions as an
intermediate step for SLR. Our goal is to approach SLR based on feature learning rather than feature engineering. We tackle SLR using
the recent advances in the domain of deep learning with deep neural networks. The problem is approached by classifying isolated signs
from the Corpus VGT (Flemish Sign Language Corpus) and the Corpus NGT (Dutch Sign Language Corpus). Furthermore, we investigate
cross-domain feature learning to boost the performance to cope with the fewer Corpus VGT annotations.
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1. Introduction
SLR systems have many different use cases: corpus anno-
tation, in hospitals, as a personal sign language learning
assistant or translating daily conversations between signers
and non-signers to name a few. Unfortunately, unconstrained
SLR remains a big challenge. Sign language uses multiple
communication channels in parallel with high visible intra-
sign and low inter-sign variability compared to common
classification tasks. In addition, publicly available annotated
corpora are scarce and not intended for building classifiers
in the first place.
A common approach in SLR is to get around the high di-
mensionality of image-based data by engineering features to
detect joint trajectories (Charles et al., 2013), facial expres-
sions (Liu et al., 2014) and hand shapes (Ong and Bowden,
2004) as an intermediate step. Data gloves (Oz and Leu,
2011), colored gloves (Wang and Popović, 2009) or depth
cameras (Chai et al., 2013) are often deployed in order to
obtain a reasonable identification accuracy.
In recent years, deep neural networks achieve state-of-the-
art performance in many research domains including image
classification (Szegedy et al., 2014), speech recognition
(Graves et al., 2013) and human pose estimation (Pfister et
al., 2014). The deep learning models that we use in this work
are based on convolutional neural networks (CNNs) (Lecun
et al., 1998). A CNN is a model with many parameters
that are adjusted iteratively using optimization algorithms
(= learning) and a large amount of annotated data.

Figure 1: A sample from the Corpus VGT (Ghent Univer-
sity), filmed from three viewpoints.

In previous work (Pigou et al., 2015), we showed that deep
neural networks are very successful for gesture recognition
and gesture spotting in spatiotemporal data. Our developed
system is able to recognize 20 different Italian gestures (i.e.,
emblems). We achieved a classification accuracy of 97.23%
in the Chalearn 2014 Looking At People gesture spotting
challenge (Escalera et al., 2014). This gives us an indication
that deep neural networks can be useful for SLR.
In this work, the problem is approached by classifying iso-
lated signs from the Corpus VGT (Van Herreweghe et al.,
2015), the Flemish Sign Language Corpus, and the Cor-
pus NGT (Crasborn et al., 2008; Crasborn and Zwitserlood,
2008), the Dutch Sign Language Corpus. Furthermore, we
investigate cross-domain feature learning to boost the per-
formance to cope with the fewer Corpus VGT annotations.

2. Methodology
2.1. Data
The two corpora used to explore SLR (Corpus VGT and
Corpus NGT) have similar camera setups and use very simi-
lar gloss annotation rules with identical software (ELAN).
Both corpora consist of Deaf signers that perform tasks such
as retelling comic strips, discuss an event and debating on
chosen topics. For each corpus, the 100 most frequently
used signs are extracted together with their gloss. The data
is split into three sets: 70% training set, 20% test set and
10% validation set. The training set is used to optimize the

Figure 2: A sample from the Corpus NGT (Radboud Uni-
versity Nijmegen), filmed from two viewpoints.
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Figure 3: The architecture overview of the deep neural network used in this work. All layers are shared among corpora,
except for the softmax classifier. This will boost the performance for the Corpus VGT, as it learns better features using the
Corpus NGT with more annotations.

neural networks, the validation set is used for evaluation
during training and the test set is used to evaluate the final
models.
The Corpus VGT (Figure 1) uses Flemish Sign Language.
The project started in Juli 2012 and ended in November 2015
at Ghent University, in collaboration with the Linguistics
Group VGT of KU Leuven Campus Antwerp, and promoted
by Prof. Dr. Mieke Van Herreweghe (Ghent University)
and Prof. Dr. Myriam Vermeerbergen (KU Leuven Campus
Antwerp). The corpus contains 140 hours of video and
a small fraction is annotated. After cleaning the data, we
extracted a total of 12599 video-gloss pairs from 53 different
Deaf signers.
The Corpus NGT (Figure 2) contains Deaf signers using
Dutch Sign Language from the Netherlands. This project
was executed by the sign language group at the Radboud
University Nijmegen. Every narrative or discussion frag-
ment forms a clip of its own, with more than 2000 clips. We
extracted a total of 55224 video-gloss pairs from 78 different
Deaf signers.
As Figure 4 shows, there is a class imbalance for both cor-
pora. This means that accuracy measures will be highly
skewed. For example, only predicting the most common
sign (which is “ME”) for every sample across the whole
dataset already results in 30.9% and 11.2% accuracy for the
Corpus NGT and the Corpus VGT respectively.
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Figure 4: The relative frequency for the five most common
signs in both corpora. The class imbalance is significant
in both corpora, but is especially prevalent for the Corpus
NGT.

2.2. Convolutional Neural Network (CNN)
CNNs are models that allow to learn a hierarchy of lay-
ered features instead of manually extracting them. They
are among the most successful techniques in deep learning,
a domain in machine learning that has proven to be very
successful at recognizing patterns in high dimensional data
such as images, videos and audio. These artificial networks
are inspired by the visual cortex of the human brain. The
neurons in a CNN will connect to a local region of the image,
called a receptive field. This is accomplished by perform-
ing discrete convolutions on the image with filter values
as trainable weights, which are optimized using the gradi-
ent descent algorithm. A second important building block
in a CNN is a pooling scheme, where only the interesting
information of the feature maps is pooled together.
These base operations are performed in multiple layers as
illustrated in Figure 3. This architecture is inspired by (Si-
monyan and Zisserman, 2014). Three convolutional layers
are stacked before performing max-pooling (only the maxi-
mum activation of each region remains) on non-overlapping
2x2 spatial regions. The input image sequence consists of 8
frames of size 128x128. Each frame is subtracted from the
previous frame to remove static information. These frames
are rotated, shifted and stretched randomly during training
to artificially increase the amount of data in order to learn
more generalized features. This technique is called data
augmentation.

3. Results
3.1. Corpus NGT
The resulting model, with the highest score on the validation
set, is illustrated in Figure 3 (without the VGT branch). The
shorthand notation of the full architecture is as follows: C3

32-
P -C3

64-P -C3
128-P -C3

256-P -C3
512-P -D2048-D2048-S, where

Ca
b denotes a stacked convolutional layers with b feature

maps and 3x3 filters, P a max-pooling layer with 2x2 pool-
ing regions, Dc a fully connected layer with c units and S a
softmax classifier.
The top-N accuracy is a measure indicating the probability
that the correct answer is within the model’s N best guesses.
The top-N accuracies of the test set for the Corpus NGT are
depicted in Figure 5. The CNN achieves a top-1, top-3 and
top-5 accuracy of 56.2%, 75.7% and 82.1% respectively for
100 signs. This is especially interesting for automatic corpus
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Figure 5: Corpus NGT top-N accuracies. A measure indi-
cating the probability of the correct answer being within the
model’s N best guesses.

annotation, where providing a list with the N best guesses is
appropriate.
As mentioned above, we have to keep in mind the class
imbalance. The confusion matrix shows the fraction of true
positives for each class (each sign) on the diagonal. It also
tells us which classes it gets confused with. To have a better
insight into the model’s performance, we show the confusion
matrix in Figure 6. Not surprisingly, almost all classes get
confused with frequently occurring ones. The CNN learned
to bet on common glosses when it is unsure about a certain
input, because more often than not it will get rewarded for
that. Other misclassification is due to signs that are hard to
distinguish from each other.

3.2. Corpus VGT
To cope with the smaller amount of annotations for the Cor-
pus VGT compared to the Corpus NGT, we train a shared
model on both corpora (Figure 3). This cross-domain learn-
ing is a form of transfer learning, where the knowledge
of one or more domains (in this case the Corpus NGT) is
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Figure 6: Corpus NGT confusion matrix indicating the
classification performance of the deep neural network.
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Figure 7: Corpus VGT top-N accuracies with cross-domain
learned features. The red outline shows the improvement
compared to the accuracies without cross-domain learning.

useful for other domains. Our motivation is that the learned
features for both domains should be similar, except for the
softmax classifier. All sign languages have similar visual
features: they consist of hand, arm, face and body expres-
sions. We hope to capture these generic building blocks in
order to boost the performance for the Corpus VGT.
In Figure 7, the top-N accuracies are shown. It achieves a
top-1, top-3 and top-5 accuracy of 39.3%, 60.3% and 69.9%
respectively for 100 signs. To show the improvement using
the cross-domain learning, the sensitivity (true positive rate)
increase for each class is depicted in Figure 9. We clearly see
a significant improvement for most signs, but a few classes
are negatively affected by it. The resulting confusion matrix
is shown in Figure 8. The errors are more spread out than
the ones for the Corpus NGT, because the class imbalance
is less prevalent.

4. Conclusion and Future Work
We show that CNNs are capable of learning features from
image sequences across linguistic sign language corpora.
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Figure 8: Corpus VGT confusion matrix with cross-domain
learned features.
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Figure 9: Corpus VGT sensitivity (true positive rate) increase compared to the model without cross-domain feature learning,
depicted for each sign. Some signs are negatively affected by it. Further research will be required to determine the reason.

Our models achieve an accuracy of 39.3% with the Corpus
VGT and 56.2% with the Corpus NGT for the 100 most com-
mon signs. We also show that the knowledge learned from
the Corpus NGT can be passed on to boost the performance
of the Corpus VGT.
Given the high dimensionality of video, the fact that these
corpora are not tailored for machine learning and the fast
and subtle movements of Deaf signers, deep neural net-
works show potential to build upon for SLR. The need for
manual feature engineering, specialized hardware or other
constraints decreases with more available corpora, advance-
ments in unsupervised learning (learning from data without
annotations) and language modeling.
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