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Abstract 

Researchers have been investigating the potential rewards of utilizing motion capture for linguistic analysis, but have encountered 
challenges when processing it. A significant problem is the nature of the data: along with the signal produced by the signer, it also 
contains noise.  The first part of this paper is an exposition on the origins of noise and its relationship to motion capture data of signed 
utterances. The second part presents a tool, based on established mathematical principles, for removing or isolating noise to facilitate 
prosodic analysis.  This tool yields surprising insights into a data-driven strategy for a parsimonious model of life-like appearance in a 
sparse key-frame avatar. 
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1. A Simple Case Study as Motivation 

Noise is an unwanted modification to motion capture data 

that occurs during recording.  The following example 

illustrates how noise poses barriers to the analysis of 

prosodic structure. Figure 1 is a time graph taken from a 

motion capture session (Wilbur and Malaia In Press).  It 

displays the y-coordinate (height) of the right wrist over a 

two-second period at the beginning of the sentence 

‘Newspaper said there was an awful storm in Florida where 

homes, cars, and trees were destroyed.’  The first two 

seconds contain the signs ‘NEWSPAPER READ’.  

Although the signal looks smooth to the casual observer, 

problems arise when using the data to compute changes in 

speed as a precursor to examining prosody. 

 

Figure 1:  Height Information for a Right Wrist Marker. 

Determining changes in speed is a two-step process.  The 

first computes the speed from the marker’s position data 

using a central difference approximation for the derivative:  
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Figure 2 is a graph of the wrist marker’s speed.  The curve 

contains many small spikes which are due to the noise 

contained in the original position data.   

 

Figure 2: Speed of Right Wrist. 

The second step computes the change in speed, which is 

essential for studying prosody: 
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Figure 3 is a graph of the result.  The spikes are even larger 

and dominate the curve. This jagged curve gives the 

impression of jerky motion, but the original position graph 

in Figure 1 reflects the smoothly flowing discourse of a 

fluent signer as confirmed in the original video. 

The noise that was barely perceptible in Figure 1 has been 

magnified to the point where it is difficult to use visual 

inspection to identify any aspect in the prosodic structure 

of the utterance. From this example, it is clear that the 

motion capture data contains noise, but the question 

remains as to its origins and severity. Effective analysis 

requires its isolation and/or removal. 

2. Fundamentals and Terminology of Signal 

Processing 

This section presents a brief outline of the principles of 

signal processing used to clean a motion capture data 

stream.  These principles are applicable to the analysis of 

any time series data, including motion capture.  A more in-
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depth treatment can be found in (Smith 2011). 

 

Figure 3:  Change in Right Wrist Speed. 

Several important concepts of signal processing can be 

analyzed from an idealized production of the word 

BICYCLE in American Sign Language (ASL).  In this sign, 

the height of the right hand oscillates vertically in a regular 

manner similar to the idealized graph shown in Figure 4.   

Since the horizontal axis of this graph is time, this plot is 

said to be in the time domain.    

 

Figure 4: Height Data of a Wrist from an Idealized 

Production of BICYCLE. 

The size of the oscillation is called the amplitude of the 

signal, whereas the speed at which the hand moves through 

the oscillation is its frequency.  Amplitude is measured in 

units such as millimeters (mm), and frequency is measured 

in cycles per second also known as Hertz (Hz).   

Unfortunately, the signal is rarely as simple as in Figure 4. 

Returning to Figure 1, the oscillations in the graph show 

variation in both their length and size. Thus, these 

oscillations change in both amplitude and frequency over 

the course of the phrase. To analyze more complicated 

signals, we need the Fourier transform (Duhamel and 

Vetterli 1990), which decomposes a signal into a collection 

of contributing pure oscillations.  Figure 5 shows a density 

plot, analogous to a histogram, of all the oscillations 

present in the signal from Figure 1. This plot is called the 

signal’s spectrum in the frequency domain, since it displays 

the strengths of the signal’s oscillations at various 

frequencies, which are shown on the horizontal axis.  

This spectrum was constructed with a Fourier transform on 

the original time-domain signal, and yields a list of 

amplitudes in the frequency domain, which we can then 

analyze and edit.  For example, Figure 6 contains a plot of 

the signer’s right wrist height while standing still with arms 

raised in a calibration posture.   

 

 

Figure 5: Frequency Spectrum of the Wrist Height During 

the First Two Seconds of the Phrase. 

 

 

Figure 6: Time and Frequency Domain Plots of Signer 

with Arms Up. 

An analysis of the right wrist height and its resulting 

spectrum yields one main low-frequency oscillation with a 

spread of smaller amplitudes at higher frequencies.  These 

are fast, but tiny oscillations around a slow variation of the 

wrist height that occurs as the signer attempts to hold still.   

Returning to the motion in Figure 5, we see a more 

complicated profile with a main high amplitude signal at 

low frequencies and then a smooth falloff in amplitude at 

higher frequencies. Their small amplitudes indicate that 

these fast oscillations contribute little to the signal. It is this 

noise that software needs to remove before meaningful 

analysis can be performed.   

For our purposes, removing unwanted high frequencies 

will not alter the main signing signal.  We do this by means 

of a low-pass filter, which sets all the frequency amplitudes 

above a certain threshold to zero.  After the suppression of 

these amplitudes, we can recover the cleaned signal by 

inverting the Fourier transform, yielding a smoother 

trajectory for the wrist.  The cleaned signal will rarely 

deviate from the original by more than a fraction of a 
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millimeter.  In our study, over 99% of the samples deviated 

by less than a millimeter.   

3. Analyzing Noise in Sign Language 

Motion Corpora 

This section discusses practical considerations for 

determining which frequencies are relevant to linguistic 

research and which can be safely considered as noise. 

Figure 7 contains a conceptual diagram of a spectrum for a 

coordinate value of a position marker in the frequency 

domain.  The vertical axis is amplitude and the horizontal 

axis is frequency.   

 

Figure 7: Conceptual Regions of Positional Data Graphed 

in the Frequency Domain. 

The frequency spectrum in this diagram is divided into 

three sections which have different impacts on sign analysis.  

We begin with the region marked “3”, representing 

frequencies above 12 Hz.  According to (Marshall and 

Walsh 1956), the muscles in the human body cannot create 

oscillations faster than 10-12 Hz, and so the frequencies in 

this region can thus be seen as noise attributable to 

fluctuations in the recording technology.  These frequencies 

can safely be eliminated before performing further analysis 

of the signal.  

Frequencies slower than 10-12Hz, in regions 1 and 2, may 

be produced by human motion. However, not all such 

frequencies of motion have linguistic meaning for sign 

language.  This can be clearly seen by looking at the types 

of motion that the human body produces in sign discourse 

and the oscillations of parts of a signer’s body involved in 

such motion. On the slower end of the scale, oscillations on 

hip markers correspond to such linguistic processes as role 

shift. Due to the sheer mass involved in moving the human 

torso, these motions will have lower frequencies of no more 

than 0.5 Hz. In contrast, fingers being of much lower mass 

and smaller movements, are capable of higher frequencies, 

such as the motion displayed in fingerspelling or in internal 

movement such as trilling (WAIT, FINGERSPELL), but 

even here the cutoff is no more than 4 Hz as can be seen in 

analyses of finger spelling rates (Quinto-Pozos 2010).   

So, the region in the diagram marked “1” contains the main 

low frequency movements generated by sign language 

production. The cutoff for this region will depend on a 

marker’s placement, with lower frequencies for markers on 

the trunk of the body and higher frequencies at more distal 

markers. Table 1 gives a set of empirically-determined 

frequency cutoffs for intermediate markers. These limits 

are deliberately conservative to assure that no aspect of a 

human linguistic utterance is being compromised. 

Joint Frequency (Hz) 
Hips 0.25 
Waist 0.5 
Upper spine 0.5 
Neck 1.0 
Shoulders 1.0 
Elbow 2.0 
Wrist 2.0 

Table 1: Frequency Cut-offs for Selected Markers. 

For linguistic analysis, we can clean the position data by 

converting it to the frequency domain, setting the amplitude 

of the frequencies in regions 2 and 3 to zero, and using the 

modified spectrum to reconstitute the marker’s position in 

the time domain via an inverse Fourier transform.  From 

the cleaned data, we proceed with the calculations for speed 

and speed change.  The resulting graphs shown in Figure 8 

do not exhibit the spikes seen in Figures 2 and 3. 

 

 

Figure 8: Speed and Change of Speed Computed with 

Cleaned Position Data. 

4. A New Tool 

To aid in isolating or removing noise from motion capture 

data, we created a software suite called SignCleaner to aid 

in the signal processing of motion capture data of signed 

utterances.  The system accepts HTR, a common format of 

motion capture data (Parent, et al. 2009) and can 

accommodate any number of markers.  The suite is 

available for download at http://tinyurl.com/jfysn2t and 

consists of two parts.  The first part is a C# application that 

translates HTR data into a comma delimited (.csv) file 

compatible with the R statistical computation environment 

(R Core Team 2000).  The second part is a collection of R 

scripts that perform the following:  

Frequency (Hz) 
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 Removing noise (cleaning) using a Butterworth filter, 

based on a Fourier transform (Hong and Lancaster 

2004). A Butterworth filter tapers the attenuation of 

the frequencies being removed for a highly smooth 

result. Researchers can adjust the frequency cutoffs to 

best accommodate their analyses. 

 Computing speed and change of speed for each 

marker.  Since these are scalar metrics, they lend 

themselves to easy visualization in the time domain. 

 Visualizing the data to facilitate inspection for 

patterns or trends.  

 Exporting the position, speed and speed change of 

markers as a CSV file, suitable for use in ELAN 

(Crasborn, et al. 2006). 

The tool has been validated on a subset of the Wilbur 

corpus (Wilbur, et al. 2011), consisting of 58 markers with 

9400 data points per marker. Figure 9 shows a screen shot 

of an ELAN session, showing a segment of the speed and 

change of speed of the right wrist sensor.  Both measures 

are computed with the cleaned position data and the 

original, uncleaned data.  The lighter curves in each track 

show the results from the original noisy position, whereas 

the darker curves are computed from the cleaned data. 

 

Figure 9: Elan Interface for Motion Plot Analysis. 

5. A Novel Finding and its Application to 

Avatar Technology 

Our discussion of Figure 7 did not consider the entire 

spectrum, so we return to it now.  From the diagram, we 

know that we want to eliminate the frequencies in region 3 

as they are noise introduced by the recording technology. 

Further we want to retain the frequencies in region 1 for 

linguistic analysis. This leaves region 2, which contains 

frequencies that are not of linguistic significance, but are 

none the less created by a human while producing signed 

utterances.   From the perspective of linguistic analysis, this 

is noise, but from the perspective of avatar technology, this 

is valuable information for enlivening an avatar. 

In order to create the illusion of life, avatars must continue 

to move, even when a signed discourse has concluded.  A 

living human body is never completely still, even when at 

rest, and the human mind and visual sense are highly 

attuned to expect this dynamic.  An avatar at rest needs to 

continually display subtle movements to avoid being 

perceived as a static image. This is a particular challenge 

for sparse-key animation systems (Perlin 1996) 

In entertainment technology, two common techniques used 

to maintain the dynamics of an avatar are  

 the manual adjustment of motion curves by an 

animation artist (Gleicher 1998), and  

 the introduction of Perlin noise.   

Since hand animation is time-consuming and expensive, 

Perlin noise is preferred because it can be automated (Perlin 

1995).  It can be tuned to a specific set of frequencies 

(Lagae, et al. 2010) and is therefore ideal for this situation.  

We can tune this type of noise so that it primarily contains 

frequencies in region 2, the enlivening frequencies, and 

these will be perceptible in the finished animation.  Figure 

10 shows the frequency spectrum for a version of Perlin 

noise tuned to roughly match the three regions of Figure 7.  

 

Figure 10: Spectrum of Perlin Noise. 

The frequencies in this plot are essentially bounded on the 

right, and so there are very few high frequencies 

corresponding to region 3.  In addition, the amplitudes of 

its low frequencies in region 1 are small enough so that the 

addition of this noise will not interfere with any intended 

animations such as a signed utterance.  Since the range of 

frequencies is bounded on both the lower and upper ends, 

it corresponds nicely with enlivening region 2 of Figure 7. 

Traditionally, Perlin noise is only applied in situations 

where the avatar has otherwise stopped moving, however 

an abrupt transition to Perlin noise is incompatible with the 

high fidelity motion required to make avatar signing easily 

legible.  Attempts to gradually introduce Perlin noise do not 

improve the problem, and can introduce jarring 

discontinuities in the motion. 

6. An Insight from Motion Capture Data 

A heatmap facilitates further exploration the presence of 

noise in the motion capture data by visualizing the 

relationship of frequency and amplitude with time in the 

signal. Figure 11 displays a heatmap of the 

amplitude/frequency profile over an entire recording 

session computed using a sliding discrete Fourier transform 

(Jacobsen and Lyons 2003).  In this visualization, the x-axis 

displays the frequency, the y-axis displays time, and the 

amplitude is displayed as a grayscale intensity with darker 

intensities representing higher amplitudes. The regions 

2 1 3 
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labeled in this figure correspond to regions in Figure 7. For 

frequencies in region 3 that are greater than 12Hz, the noise 

is nearly constant over the entire time range.  This is to be 

expected since this noise does not come from human 

movement, but rather from the recording equipment itself.  

  

Figure 11: Heatmap of Amplitude vs Frequency and Time 

for Right Wrist Height. 

The frequencies in region 2 are too high to warrant 

linguistic analysis, but are still produced by a human signer.  

The heatmap demonstrates that these frequencies are 

present throughout the entire discourse, whether the signer 

is producing utterances or is at rest. From a linguist’s 

perspective, this is noise and can safely be ignored, but 

from an animator’s perspective, region 2 frequencies are 

actually invaluable, as they can be used to enliven the 

avatar. These data inform us that these frequencies must be 

present whenever an avatar is signing or is at rest. 

Observers do not perceive these frequencies as noise during 

signing, since the frequencies of the signed utterances have 

comparatively higher amplitude. High-amplitude motions 

produced by signing overwhelm the subtle changes created 

by the lower amplitude frequencies from region 2.   

To further investigate the relationship between noise and 

signing, we examine a representative clip of the height of 

the right wrist marker during two sentences which begin 

and end with the signer at rest. We will focus on a frequency 

of 5Hz which lies in the enlivening region of the heat map.  

A vertical slice of the heatmap at 5Hz, corresponding to the 

dotted line in Figure 11, can be plotted with time on the x-

axis and the amplitude at 5Hz on the y-axis.  Figure 12 

shows the graph of the portion of this signal corresponding 

to the small rectangle in Figure 11. Active signing in this 

segment occurs between times 24 and 30 seconds. The 

signer is at rest at the onset and conclusion of the segment. 

The conventional expectation would be that the amplitudes 

for this particular frequency should be lower while the 

person is signing. Yet in this example we find exactly the 

opposite. Counterintuitive as it is, the enlivening 

frequencies are not just present, but actually increase in 

amplitude in the center of this graph, during which the 

signer is actively producing utterances. So, when adding 

noise to enliven an avatar, we should not suppress or turn 

off that noise when the avatar is signing. Figures 11 and 12 

thus provide additional evidence that we should apply these 

enlivening frequencies throughout an avatar’s signing. 

 

 

Figure 12: Amplitude of Wrist Height at 5Hz  

for Two Sentences. 

7. Implementation 

To add enlivening frequencies to the avatar, we apply Perlin 

noise generators to each joint using the frequency ranges 

dictated by region 2. The generators run continually, and 

independently, of any utterances produced by the avatar. 

The exception to this is the blinking action of the eyelids.  

Blinking is a discrete movement that must be controlled 

with a separate mechanism which is outside the scope of 

this paper (Baker and Padden 1978) (R. B. Wilbur 1994). 

There is one additional consideration required when setting 

up the Perlin noise generators, as they also require 

knowledge of amplitude. This information is easily 

obtainable from the spectrum of each marker and is 

summarized in Table 2. Because our avatar requires angle 

data for its joint rotations, we use the fact that 𝑠𝑖𝑛(𝜃) = 𝜃 

for small 𝜃 to estimate rotational data from positional data. 

Perlin noise generators add a modest computational cost, 

but if the avatar is used in an environment where computing 

resources are limited, then implementing a single generator 

on the hips is an effective choice as the hips will transmit 

subtle motion, albeit coordinated, to the rest of the avatar’s 

skeleton, even in the absence of noise on the other joints. 

(McDonald, Wolfe and Schnepp, et al. 2015). 

Joint Amplitude (degrees) 
Hips 6.37 x 10-3 
Waist 4.78 x 10-3 
Upper spine 4.78 x 10-3 
Neck 2.39 x 10-3 
Shoulders 2.39 x 10-3 
Elbow 2.39 x 10-3 
Wrist 2.39 x 10-3 

Table 2: Amplitudes (noise strengths) for Perlin Noise. 

8. Results 

To test this approach, we applied Perlin noise generators to 

all the joints in the avatar’s spinal column (hips, waist, 

upper spine, and neck) and arms (shoulder, elbow, and 

wrist).  More distal joints were given noise with lower 

amplitudes and higher frequencies as indicated in Tables 1 

and 2. The generators are active throughout the entire 

animation, regardless of whether the avatar is signing or not.  

The reference http://tinyurl.com/zzl8btc is a link to a video 

demonstrating the effect.  The video contains a side-by-side 

comparison of animations with and without Perlin noise 
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generators. The animation on the left has no noise, while 

the one on the right has noise applied to all joints previously 

mentioned. When at rest, the figure on the left has the 

appearance of a static photograph, whereas the figure on 

the right continues moving subtly.  The noise does not 

interfere with the portrayal of the signed utterances.   

This approach is well accepted by test participants who 

view and rate our avatar’s utterances for clarity and 

naturalness.  In a developing a mathematical model for role 

shift as reported in (Schnepp, et al. 2013), Deaf participants 

fluent in ASL viewed and rated animations that 

incorporated this livening method. A majority of the 

participants rated clarity as either “clear” or “very clear” on 

a 5-point Likert scale. A follow-up study (McDonald, 

Wolfe and Moncrief, et al. 2016) yielded similar results.  

Clarity was a particularly important measure here, because 

it tested whether noise was interfering with the avatar’s 

signing.  The results indicate that applying noise to an 

avatar’s joints, with frequencies and amplitudes 

appropriately tuned according to the results of the study of 

motion capture data, are effective in enlivening an avatar 

without impeding the avatar’s ability to communicate.   

9. Future work 

We look forward to testing the scalability of SignCleaner 

by applying it on larger corpora.  We also plan to use it for 

its original intended purpose of prosodic analysis. We will 

also add the ability to import other motion capture formats. 
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