
A hybrid formalism to parse Sign Languages

R

´

emi Dubot, Christophe Collet

IRIT
Université de Toulouse

France
dubot@irit.fr, collet@irit.fr

Abstract

Sign Language (SL) linguistics is dependent on the expensive task of annotation. Some automation is already available for low-level
information (eg. body part tracking) and the lexical level has shown significant progresses. The syntactic level lacks annotated corpora as
well as complete and consistent models. This article presents a solution for the automatic annotation of SL syntactic elements. It exposes
a formalism able to represent both constituency-based and dependency-based models. The first enables the representation of structures
one may want to annotate, the second aims at fulfilling the holes of the first. A parser is presented and used to conduct two experiments
to test the solution. One experiment is on a real corpus, the other is on a synthetic corpus.

1. Introduction

To study Sign Languages (SLs), linguists need annota-
tions. Currently, corpus annotation is done manually, it is
time-consuming and suffers difficulties with inter and intra-
annotator reliability. For this reason, efforts are carried out
to automatize the annotation process. Early efforts focused
on the very low-level non-linguistic information: body part
tracking, activity detection. They finally reached the base
of the linguistic level: detection of sign phases (Gonzalez
and Collet, 2011), sub-lexical (Cooper et al., 2012) and lex-
ical units (Curiel and Collet, 2013). Work on this last level
has focused on manual gestures. The only exceptions were
attempts to remove ambiguity on some lexical signs with
the help of Non-Manual Gestures (NMGs) (Paulraj et al.,
2008) or detection of NMG (Yang and Lee, 2011; Neidle
et al., 2009). Now is the time to address the annotation of
supra-lexical features. But when it comes to syntactic fea-
tures, it is not possible to ignore the NMGs anymore.
The syntax SLs is complex and different from vocal lan-
guages(Cuxac, 2000; Dubuisson et al., 1999; Bouchard and
Dubuisson, 1995; Bouchard, 1996). They use the multi-
plicity and the spatial abilities of the available articulators.
It results non-sequential productions with complex tempo-
ral, spacial and articulatory synchronizations. The syntactic
models developed for the processing of vocal languages are
deeply based on the sequentiality of lexical units. Conse-
quently, the processing of SL syntax requires the invention
of new models or, at least, to deeply rethink and adapt the
existing ones.
A recognition system always has an internal representation
of the phenomena to recognize. However, there are mul-
tiple manners to obtain such a representation. From one
extreme to another, it can be expert knowledge formalized
into a model or it can be results of uninformed automatic
learning on real data. The first requires experts to formal-
ize a complete and consistent model from their knowledge.
The second requires massive data and computer calcula-
tion. For the syntax of SLs, neither is available. The expert
knowledge is sparse and sometimes inconsistent. Anno-
tated SL corpora are too small and too heterogeneous for
uninformed learning.

Our goal is to develop tools for the semi-automatic anno-
tation. The general approach we adopt is to use supra-
lexical/syntactic models for the annotation. It targets two
objectives. First, it aims at producing annotations for all
the structures of the model. Second, it aims to enhance
the lower levels. Indeed, such models can improve two as-
pects of the quality of the lexical recognition: the results,
by re-scoring the lexical candidates, and the efficiency, by
informing the lexical layer and thereby reducing the search
space. The models are used to propagate the information of
the low-level detections.
This article exposes elements in favor of a hybrid parsing of
SLs. It presents a formalism able to represent constituency-
based structures as well as dependency-based structures.
This formalism has been created to represent models com-
bining transfered linguistic knowledge and automatically
learned dependencies. The feasibility is demonstrated with
a parser in two experiments. First, the parser is run on ex-
cerpts of the Dicta-Sign Corpus with a model composed
of five structures. Second, synthetic dependency grammars
are used to parse synthetic corpora.
Such a hybrid formalism is the solution we found for the
lack of annotated corpora and the incompleteness of the
available models. We aim at enabling the use of incom-
plete models transfered from the linguistic knowledge with
learned data.
This work tries to avoid hypotheses that would simplify SL
processing by making SLs closer of vocal languages but
would be unrealistic. In particular, it makes no assump-
tions such as the predominance of the hands over the other
articulators or the existence of a sequential skeleton of the
SL locutions. It is based on the ideas introduced by Fil-
hol (Filhol, 2009) to represent structures with the minimal
constraints that make them recognizable. This approach
enable to naturally represent the complex temporal syn-
chronization mechanisms (Filhol, 2012) of SL simultane-
ity (Vermeerbergen et al., 2007).
This document is structured as follow. It starts with the pre-
sentation of the example used all along the article. The for-
malism is described jointly with its usage for constituency-
based structures. The representation of dependency struc-

43



tures comes next. After the formalism, the parsing is pre-
sented with its general characteristics but without details on
its internal algorithm. The last part presents the two exper-
iments, their results and an analysis.

2. Formalism description

The first step toward the automatic annotation is the formal
representation of a model. The representation we propose
is similar to Context-Free Grammars (CFGs) in that it is a
derivational grammar. But it differs from CFGs on three
fundamental points. First, the right-hand side of a produc-
tion rule is not a string of units but a set of units. Second, it
introduces the possibility to express constraints between all
the units of a production rule. Third, in CFGs, the left-hand
side of a production rule is non-terminal symbol. We have
no such thing as non-terminal and terminal symbols. We
have instead detectable and non-detectable units, and both
can be atomic (terminal) or not.
We target the representation of two types of models. In the
first, a production rule represents a relation of constituency.
It comes from the Phrase Structure Grammars (PSGs) of
Chomsky (Chomsky, 1957). In the second, a production
rule represents a relation of dependency. It comes from the
dependency grammars of Tesnière.

2.1. Constituency structures

2.1.1. Example presentation

We illustrate the description of the formalism with the con-
struction of a constituency-based model from an excerpt of
a real corpus.
The excerpt comes from the French Sign Language (LSF)
part of the Dicta-Sign corpus (Efthimiou et al., 2010) which
is composed of spontaneous dialogs performed by deaf
signers. In this excerpt, the informant relates a memory of a
journey in Paris visiting the Louvre museum with a friend.
In the studied part, he explains to his interlocutor the pur-
pose of the journey –to visit the Louvre– and checks that
they share the same sign for Louvre. Figure 1 summarizes
the excerpt with a sequence of pictures.

2.1.2. Pattern decomposition

We call pattern a rule representing how a unit comes with
others. It is similar to the production rules of CFGs. We
usually draw these patterns as trees as shown in figure 2. In
the present formalism, we make each pattern correspond to
a unit (the inverse is false, it is not an equivalence relation).
Consequently, a unit can be the root of at most one pattern
for a given model. An atomic unit can be associated to a
pattern with only a root. It is the single assumption make
about units and patterns in a model. Aside from this, ev-
erything is possible. Units can appear several times in the
same pattern. Patterns can be recursive, mutually recursive,
etc.
The model we are about to introduce contains four patterns
observed in the excerpt: a buoy pattern, a “sign check” pat-
tern, a question pattern, and an acknowledgment pattern.
These patterns are examples and do not rely on a strong lin-
guistic basis. Stronger models remain to be developed with
linguists.

The patterns are described in terms of constituents as shown
in figure 2. Their internal arrangement is then described
with constraints (section 2.1.4.).
The first described pattern is a buoy (Liddell, 2003). It is
visible in figure 1, the left hand of the bi-manual sign TO-
VISIT (fig. 1(a)) is maintained all along the excerpt. The
pattern is decomposed into three sub-elements: two signs
and one locution. The second pattern is an acknowledg-
ment. It happens in figure 1 (g). It is decomposed into two
sub-elements: a head node and a sign. The third pattern is
a question. It also happens in figure 1 (g), but is less clear
on this snapshot. It is decomposed as a marker (eyebrows
up) and a locution. The “sign check” is a question and an
acknowledgment.
As shown in figure 2, the pattern decomposition can be eas-
ily represented as a tree. The sub-elements are patterns
which can be decomposed themselves or can be consid-
ered atomic in the model. Edges represent a relation of
constituency. In a decomposition, multiple elements can be
instances of a same pattern. When defining a model, one
may need to introduce the same pattern multiple times in a
same decomposition. This fact is of particular importance
as it highlights that an element, in a decomposition, does
not represent a pattern but an instance. As a consequence,
the name of a pattern is not sufficient to designate elements
without ambiguity. It is therefore necessary to associate
each instance with a role name.

2.1.3. Alternatives

Patterns do not allow generalization as all their internal el-
ements are mandatory. As patterns describe compositions,
we define an other type of rule to explicitly express alterna-
tives. The same restriction as for patterns applies to the use
of a unit as root for an alternative. In the example model,
we define a node Locution as an alternative between the
four patterns (figure 2a). Alternatives appear as rectangle
nodes in figures 2 and 4.

2.1.4. Constraints

Patterns and alternatives represent invariants in the compo-
sition. Invariants in the internal organization of the patterns
are expressed with constraints.
To come back to the example, we can extract several kinds
of invariants. One may hypothesize that the sign beginning
a buoy structure must be bi-manual (figure 2b). Another
may want to describe the temporal structure of the patterns
(Buoy finishes BuoyStruct, in figure 2b). It could also be
useful to express global constraints, for instance constraints
between one unit and all its descendants. All these invari-
ants should be expressible formally.
We represent temporal, spatial and articulatory invariants
as constraints. The constraints restrain the possible values
for the attributes of pattern instances. The attributes, their
encoding, and the logic formalisms – used to express the
constraints – are a whole. Their choice strongly impacts
the model. This is the reason why the formalism has to be
independent of the logics and attributes.
Representing a complete model requires multiple logics,
each addressing a different aspect: temporal, spatial, ar-
ticulatory, etc. We showed examples of the temporal (fin-
ishes) and articulatory (bi-manual) aspects. In this article,

44



(a) VISIT (b) MUSEUM (c) L (d) FORGET (e) pointer (f) LOUVRE (g) LOUVRE

Figure 1: Decomposition of the excerpt

(a) Locution (b) Buoy
(c) Ack (d) Question (e) ”Sign Check”

Figure 2: Example of model with 4 patterns (b, c, d & e)

we focus on the formalism to describe the model. For this
demonstration, only temporal constraints are used.

2.2. Edges of the models

Developing a complete model is, at best, very hard. We
consider two solutions to work with incomplete models. As
this work is developed for semi-automatic annotation, the
first solution is to transfer the charge to the human operator.
Such a system would ask something like “There might be
a ‘Question’ there, is there an ‘unmodeled-loc’? and which
are its characteristics (attributes)?”. This solution requires
from the operator precisely what makes annotation difficult
for humans: he/she is supposed to fulfill many attributes
that are hard to measure for a human being. This problem
leads to the second solution: coarse-grained models. Such
models are not meant for the analysis of their results, they
intend to produce a block with attribute values similar to
what could have produced a complete model. Our solution
combines these two approaches.
When a model is incomplete, edge nodes appear which are
used but not modeled. Such an edge is present in the exam-
ple model as “unmodeled-loc”. The “unmodeled-loc” rep-
resents locutions built using non-modeled structures. We
have built an experimental coarse model based on the se-
quence of lexical signs (because the annotation was already
existing). The results, as expected, are not good. Depend-
ing on how constrained we make the model, we have far
too much false-negatives or false-positives. The sequence
model does not work well with the overlapping units: it in-
cludes units we don’t want included and vice-versa. We ex-
pect dependency-based models to constitute better coarse-
grained models.

2.3. Dependency structures

For the dependency grammar part, we present the for-
malism with a model which makes several simplistic hy-
potheses. The example model divides the units in two
types: Manual Gestures (MGs) and NMGs, each one with
its proper behavior. The units can represent a variety of
forms: standard signs, other MGs (e.g. pointing MGs), fa-
cial gestures (e.g. qualifiers, quantifiers, modality mark-
ers), gaze gestures (e.g. references), etc. In SLs, articu-

Figure 3: Representation of a dependency

latory constraints impact the syntactic level. Some units
interact and some others are incompatible. In this exam-
ple, the model emulates simplified articulatory interactions
between its units:

• MGs never overlap. This is a simplification as it
excludes the representation of yet described phe-
nomenons (e.g. buoy structures, Cuxac’s situational-
transfers (Cuxac, 2000)).

• All NMGs can overlap. This is a simplification as
some NMGs are articulatory impossible to produce si-
multaneously.

These simplifications allowed us to work with a slightly ex-
tended version of the Hays’ formalism. Hays defines rules
of the form X(Y�n, ..., Y�1, ⇤, Y1, ..., Ym) where X and Yk

are categories of units. Such a rule expresses that a unit of
category X takes the place of the star in a sequence of de-
pendents of categories Y�n to Ym. This formalism is suf-
ficient to represent MGs (assuming the sequence simplifi-
cation). But the NMGs requires to extend it, which is done
with rules of the form X(Y ).
We have represented such dependency structures with the
formalism with the construction shown in figure 3. The
categories are described as alternatives between rules. The
rules are described as patterns. The constraints work ex-
actly as for constituency-based structures.

3. Parsing

The purpose of this work is the semi-automatic annotation
of structures of models. The first step toward this objective
was to formalize the model to recognize. The next step
is the recognition itself. We give here an outline only of

45



the developed system. The detailed description will be the
subject of a dedicated article.
In addition to the formalized model, the parser needs an in-
put to parse. This input is an annotation of a subset of the
units of the model. Units of this subset (they can be ei-
ther pattern or alternatives) are said to be detectable. Their
annotation can originate from manual annotation or third
party detectors. These detectable units appear in red in fig-
ures 4 and 3. The parser is able to command the external
detectors as it runs. In this mode, it does not receive the
input annotation a priori, but works interactively with the
detectors. This allows to inform the detectors of the context
and therefore to reduce their search spaces. On the exam-
ple, the parser asks to the “Buoy-Marker” detector “is there
something between 201 and 212?”. This allows to reduce
the time interval the detector will process.
The internal representation of the model in the parser is an
AND/OR graph. This representation is called the implicit
graph. Our work extends the ideas of Mahanti (Mahanti
et al., 2003) for the parsing. A unit identifying a pattern
gives an AND node and one identifying an alternative gives
an OR node. In the implicit graph, nodes represent pat-
terns or alternatives but not instances. Figure 4 gives an
example of an implicit graph for the example model. The
implicit graph is used to generate an explicit graph. In this
last graph, nodes represent instances.
The parsing operation results in a set of graphs. Each graph
is a solution. The figure 5 shows an example of graph out-
put by the parser. The nodes represent occurrences either
externally detected or internally inferred. The arcs corre-
spond to constituency or dependency relations of the model.
In a solution graph, each node has attributes. As the model
can be under-constrained, there may be more than one so-
lution. In particular, the resolution can find more than one
acceptable value for attributes.
The parser is currently top-down. It builds the solution
graphs starting from a set of given roots. This set can be,
for example, a set of pre-detected lexical unit occurrences
resulting of a first pass of lexical recognition. It is how
the parser process dependency-based models. It then builds
trees top-down from each root and merges the trees when
possible. It is therefore obvious than solution graphs can
have multiple connected components. This occurs, for ex-
ample, when a signer is interrupted by a question, answers
quickly and then continues his/her speech. In the case of
constituency-based models, the top-down parsing requires
to introduce a detectable root. It is the function of the
”Signing” unit in figure 4 which is detected with an activity
detector.
In the models we developed, the set of attributes contains
time-start and time-end. Their values make it easy to trans-
form a solution graph into an annotation.

4. Results

The parser has been evaluated for constituency-based and
dependency-based structures: the first on real annotations,
the second on synthetic data. The results of the parser can
be directly observed, quantitatively and qualitatively. The
evaluation of the formalism itself is harder to produce. We

propose an interpretation of the parser’s results to under-
stand what they say about the formalism.
The parser has been run on several occurrences of the
constituency-based structures. The external detectors were
simulated with a manual annotation of the detectable units.
But the small number of occurrences does not allow a quan-
titative evaluation. In particular, the evaluation corpus con-
tains only one occurrence of a combination of the struc-
tures.
We still produce a qualitative analysis of the results. The
parser outputs numerous solutions: many false-positives
and partial solutions. A simple ranking by the size of the
solutions is efficient against the partial solutions.
The false-positives can be classified in two categories:
wrong hierarchical order and bad modeling of the lower
levels of the syntax (discussed above, in section 2.2.). The
first could be addressed with recursive constraints on the
compositions. For example constraints like “the locution
constituting a question cannot contain a question”. Such a
feature could be interesting for experiments on models. But
in a context of semi-automatic annotation, we rather think
that this type of false-positives must be resolved by a hu-
man expert. A system requiring this type of intervention of
the operator is still of good help: it reduces the work in the
task of selecting the right hierarchical organization. This
uses the expertise of the operator for high-level problems.
The second type of false-positives comes from the difficulty
we met in modeling the syntactic structures of low-level. It
is the reason why we developed the dependency part of our
formalism.
To evaluate the parser on dependency grammars, we have
built a synthetic corpus. The idea behind this is to test the
parser against bigger inputs. To generate this corpus, we
used the model presented in the section 2.3.
Our generator starts with the random generation of depen-
dency grammars. It then generates random phrases follow-
ing the grammars. In the absence of measures on annota-
tions, the models were parametrized arbitrarily. The cor-
pus has 5000 grammars with 1 phrase each. All grammars
have 20 categories. Every category has 3 to 4 rules each.
Rules for non-manual categories have exactly one depen-
dent. For manual categories, sizes have a uniform distribu-
tion on [0, 4].
The results of the parsing on the synthetic corpus are visi-
ble in figure 6. The results are classed by phrase size. We
have an average of 1 to 4 false-positives per phrase. It gives
a precision of 52% to 5%. It is hard to draw conclusion
from this result as it depends on the parameters chosen at
the grammar generation. The recall of 83% to 23% is much
more interesting. It validates the computability of the pars-
ing.

5. Conclusion

The formalism of this article showed its ability to represent
structures based on constituency as well as dependency re-
lations. It has been done without assumptions on the se-
quentiality of lexical units nor on the predominance of the
manual gestures. Instead, it uses constraints to describe in-
variants on the composition of the structures and on their
temporal organization. We showed that these descriptions

46



Figure 4: Schematic view of the implicit graph associated to the example model

Figure 5: Example of solution graph

Figure 6: Evaluation on dependency grammars

allow the detection of the structures. The dependency pars-
ing shows promising results as a coarse model. This should
ease the use of constituency-based structures by disassoci-
ating them from the complete model requirement. How-
ever, the articulation between the two paradigms in one
model remains to be developed. For now, the solution
is to have two separated models, one per paradigm. The
dependency-based model is used when a non-modeled pat-
tern is reached. At this time, the human operator decides if
the pattern is present and what solution of the dependency
parsing will act as the occurrence of the non-modeled pat-
tern.

This work, in its current state, is restricted by some limi-
tations of the generative grammars. But it already avoids
the problem of designing a model with a unique root for
dependency grammars. This is critical in our context of
semi-automatic annotation, as our goal is to enable the de-
tection of structure occurrences, not to produce an inter-
pretable syntactic tree. Unfortunately, the parser is still
top-down, and consequently, the constituency-based gram-
mars still need a root. There are plans to modify the current
parser to drop the top-down mechanism. This will enable
the parser to accept non-rooted models.
To go further in the direction of automatic annotation, sev-
eral points need to be worked on. First, one will have to
build (manually or automatically) a dependency grammar
compliant with a real SL. The formalism and the parser
can manage models of dependency grammars much more
complex than one presented above.
The formalism and the parser do not represent uncertainty.
But there are good candidates to introduce uncertainty rep-
resentation in the existing parser such as fuzzy-CSPs. This
extension will certainly improve greatly the results but will
also have a computational cost.

47



6. References

Denis Bouchard and Colette Dubuisson. 1995. Grammar,
order & position of wh-signs in quebec sign language.
Sign Language Studies, 87(1):99–139.

Denis Bouchard. 1996. Sign languages & language uni-
versals: The status of order & position in grammar. Sign
Language Studies, 91(1):101–160.

Noam Chomsky. 1957. Syntactic structures. Mouton&Co,
La Haye.

Helen Cooper, Eng-Jon Ong, Nicolas Pugeault, and
Richard Bowden. 2012. Sign language recognition us-
ing sub-units. Journal of Machine Learning Research,
13:2205–2231.

Arturo Curiel and Christophe Collet. 2013. Sign language
lexical recognition with propositional dynamic logic. In
Proceedings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics, volume 2, page
328–333.

Christian Cuxac. 2000. La langue des signes française
(LSF): les voies de l’iconocité. Ophrys.

Colette Dubuisson, Lynda Lelièvre, and Christopher Miller.
1999. Grammaire descriptive de la LSQ. Université du
Québec à Montréal.

Eleni Efthimiou, Stavroula-Evita Fotinea, Thomas Hanke,
John Glauert, Richard Bowden, Annelies Braffort,
Christophe Collet, Petros Maragos, and François Goude-
nove. 2010. DICTA-SIGN: sign language recognition,
generation and modelling with application in deaf com-
munication. International workshop on the Representa-
tion and Processing of Sign Languages: Corpora and
Sign Language Technologies (LREC), Valleta, Malte,
pages 80–83.

Michael Filhol. 2009. A descriptive model of signs for
sign language processing. Sign Language & Linguistics,
12(1):93–100.

Michael Filhol. 2012. Combining two synchronisation
methods in a linguistic model to describe sign lan-
guage. In Eleni Efthimiou, Georgios Kouroupetroglou,
and Stavroula-Evita Fotinea, editors, Gesture and Sign
Language in Human-Computer Interaction and Embod-
ied Communication, number 7206 in Lecture Notes in
Computer Science, pages 194–203. Springer Berlin Hei-
delberg, January.

Matilde Gonzalez and Christophe Collet. 2011. Signs
segmentation using dynamics and hand configuration
for semi-automatic annotation of sign language corpora.
Gesture in Embodied Communication and Humain-
Computer Interaction, pages 100–103, May.

Scott K. Liddell. 2003. Grammar, Gesture, and Mean-
ing in American Sign Language. Cambridge University
Press, March.

Ambuj Mahanti, Supriyo Ghose, and Samir K. Sadhukhan.
2003. A framework for searching AND/OR graphs with
cycles. arXiv preprint cs/0305001.

Carol Neidle, Joan Nash, Nicholas Michael, and Dimitris
Metaxas. 2009. A method for recognition of grammati-
cally significant head movements and facial expressions,
developed through use of a linguistically annotated video
corpus. In Proceedings of the Language and Logic Work-

shop, Formal Approaches to Sign Languages, European
Summer School in Logic, Language, and Information
(ESSLLI 2009), Bordeaux, France.

M. P. Paulraj, Sazali Yaacob, Hazry Desa, C. R. Hema, and
Wan Ab Majid. 2008. Extraction of head and hand ges-
ture features for recognition of sign language. In Proc.
International Conference on Electronic Design ICED
2008, pages 1–6.

Myriam Vermeerbergen, Lorraine Leeson, and Onno Alex
Crasborn. 2007. Simultaneity in Signed Languages:
Form and Function. John Benjamins Publishing, Jan-
uary.

Hee-Deok Yang and Seong-Whan Lee. 2011. Combination
of manual and non-manual features for sign language
recognition based on conditional random field and active
appearance model. In 2011 International Conference on
Machine Learning and Cybernetics (ICMLC), volume 4,
pages 1726–1731.

48


