
Distributed System Architecture for Assisted Annotation of Video Corpora

Christophe COLLET, Matilde GONZALEZ, Fabien MILACHON

IRIT (UPS - CNRS UMR 5505)
Université Paul Sabatier, 118 Route de Narbonne, F-31062 TOULOUSE CEDEX 9

{collet, gonzalez, milachon}AT iritDOT fr

Abstract
This paper present one component of Dicta-Sign, a three-year FP7 ICT project that aims to improve the state of web-based communi-
cation for Deaf people. A part of this project is the annotation of sign language corpora. To improve the annotation task in terms of
reproducibility and time consuming, several plug-ins for sign language video processing are developed. The component presented in
this paper aims to link several plug-ins to annotation software through the network. These plug-ins can be coded in different languages,
operating systems and computers. For that, it uses the SOAP Web-service and a specific data-format in XML for the data exchange.

1. Introduction
Nowadays many researches focus on the analysis and
recognition of sign language to understand, reproduce and
translate to any other communication language (Ong and
Ranganath, 2005). In computer science those researches
concern the development of automatic treatments applied
to sign language videos (Lefebvre-Albaret and Dalle, 2009;
Theodorakis et al., 2009). The evaluation of their per-
formances uses annotated corpora which is, in general,
manually performed by linguists and computer scientists.
Several Annotation Tools (AT) have been developped to
achieve this task, e.g. Elan (Wittenburg et al., 2006),
Anvil (Kipp, 2001), Ilex (Hanke, 2002; Hanke and Storz,
2008), Ancolin (Braffort et al., 2004), etc. For long video
sequences, manual annotation becomes error prone, unre-
producible and time-consuming. Moreover the quality of
the results mainly depends on the annotator’s knowledge.
Automatic video processing together with the annotator’s
knowledge facilitate the task and considerably reduce the
annotation time. That is why we propose a way to integrate
those automatic treatments, here called Automatic Annota-
tion Assistant (A3), to the available AT.
From the annotator’s point of view, adding automatic treat-
ments must be easy to use, without adding complex A3 call-
ing or extra working. The annotator should be able to ex-
tract a part of a video and to use a previously defined anno-
tation as input parameter of the A3. For example, the an-
notator is working in the Annotation tool window (fig. 1.a),
any modification done is saved on the two tiers: AG1 and
AG2. When the annotator calls an A3, e.g. movement pose
detection, which needs two input parameters, then two ad-
ditional tiers appear in the window (fig. 1.b). Filling in the
two tiers could be done manually or using AG1 and/or AG2.
Once the treatment has finished the result is displayed as
a new tiers that the annotator can easily save or modify
(fig. 1.c). This example shows how using automatic pro-
cessing in this way can be easily performed.
The complexity of integrating the A3 to the AT is not just
about programming an efficient user friendly interface but
also about making A3s and ATs to communicate with each
other knowing that the programming environment used to
developed them is not generally compatible. So, in this
paper we propose a system architecture to allow the com-

�������
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

��� ������

�
�
�
�
�
�

Figure 1: Annotation Tool Example: (a) Normal environ-
ment, (b) A3 call and (c) A3 result.

munication between the A3s and the AT. We mainly focus
on specifying communication protocols, data exchange and
format.
This document presents the specification for this distributed
system for assisted annotation of video corpus. First, we
present a global view of the system. It consist of an
overview of the architecture of the system proposed. Sec-
ond, we illustrate the different communication between
each sub-part of the system and the data format used to
make them communicate. Finally, we present our choice
about development software to use and about the security
of the system.

2. Global view
The main problem about the introduction of A3s to existing
ATs is the incompatibility of programming language, oper-
ative system and platform of development. Nevertheless it
is not possible to restrict unique development conditions to
easily use an A3 to assist the annotation. Moreover treat-
ments can be very complex and it would be preferable to
develop them in a specific programming language or, even
to execute them in adapted computers. That is why we pro-
posed to overcome this problem by a Distributed System
Architecture (DSA) where the A3s are hosted in different
computers.
The communication and the data exchange are, then, done
trough the network using a protocol and an exchange data
format understandable by all the parts of the system. The
data format has to be standardized so that the ATs and
the A3s are able to process the data regardless where it

4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies

49

!"

!"

!"#

!$!"

%&#

!
"'()*)

!
"'
(
)*
)'
+,-
*

.
)+
+')
/)
,+)
0
+1
'!
"'
+,-
*

23451--'5)++67)3)81*13-

91-:+*';/,(14')<(=43')<<4*)*,4<>

Figure 2: Distributed system architecture for assisted anno-
tation of video corpus

comes from. Thus the A3’s Application Programming In-
terface (API) has to use compatible parameters with the
AT data structure. The data description standards proposed
are XML and Annotation Graph (AG) structure (Bird and
Liberman, 2001; Schmidt et al., 2008). The AG is a struc-
ture similar to the one used in the ATs, i.e. the hierarchy
of named tiers (or levels or tracks...) with a list of possible
values associated to each frame sequence. In this way any
input parameter needed by the A3, can be filled in by the
annotator with the help of the AT. In addition ATs are, gen-
erally, able to easily import/export AG structures. The AG
is stored in a XML file which is extended to add the meta-
data concerning the desired A3 processing and the video
file.
The proposed DSA is illustrated in Figure 2. The princi-
ple is to consider the AT as a client and the A3s as remote
servers to allow queries exchange. Since the number of
available A3s and ATs can vary on time depending on new
developments, another server called Automatic Annotation
Assistant Supervisor (A3S) is added to manage the infor-
mation of the A3s at our disposal and to maintain an up-
dated list of them. Thus at each time an A3 is added it
registers itself to the A3S. Then when the AT requires an
updated list of A3s it requests the A3S server. Now the AT
can directly communicate with the A3 as long as the A3 de-
scriptor is known. In addition the need of exchanging video
files between ATs and A3s leads to introduce a Video File
Server (VFS) to share videos in a simple and fast way.

3. DSA data exchange
The AT allows annotators to easily define and execute vari-
ous queries in a controlled manner. It interacts with all the
parts of the system. Firstly, for the initialization process
it queries the A3S. Secondly, to process video it commu-
nicates to the respective A3. Finally, to add or to retrieve
processed video files, it interacts with the VFS.
The A3 communicates with the A3S to register itself when
it is added. All those interactions are illustrated in Figure 3

3.1. A3 Registration

Each A3 is considered as a unit implementing various pro-
cessing functions for the annotation. To reference these

Figure 3: Simple Query Schedule

functions, each time an A3 is added, it transmits its descrip-
tor to the A3S. The descriptor is a XML code containing
API which has, among other information, a unique identi-
fier (ID), the address (@), the port number (P) and the help
text.

3.2. AT Initialization
The first query is automatically performed by the AT when
it is loaded. This query is sent to the A3S to ask for the list
of available A3 descriptors. The list can also be manually
requested for updating at any moment. It does not require
any parameter. In return, the A3S sends the list of A3s and
their descriptor. The AT can therefore decode the list and
show to the annotator the available A3’s functions descrip-
tions.

3.3. A3 calling
When the annotator selects a function, the parameters of
this function are set up by filling in the AG provided by the
A3 descriptor. The minimum functionality that is expected
from the AT, is an interactive editor for this AG. Two in-
dispensable data elements are a list of videos and the ID
of the process. The list of videos could correspond to dif-
ferent views for a same corpus. Once processing has been
performed, it encapsulates the results, again in the form of
an AG structure and sends them as a reply to the requesting
AT.

4. XML Format
Previously, we defined that the API of each A3 process uses
a data format similar to the one used in AT, the AG. Due to
the diversity of Annotation systems used, we need a sim-
ple global and compatible annotation graph system. That
is why we decided to use an annotation graph format based
on the one defined in Schmidt et al. (2008). The one we
define is simple, easy to use and open. Thanks to this for-
mat, client can easily define frames and parameters for each
frames, to use. In the server side, it has to read this AG to
get the parameters needed to its process, execute it and fi-
nally put the result in the same AG. In order to simplify the
processing of the parameters of the API and to get coher-
ence, the video names, the process to call and every param-
eter are defined in this AG.

4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies

50

Finally, we have all annotation data, input and output, tem-
porally described in an AG and encapsulated in one XML
file. In addition this file contains the whole informations
like API, option parameters, process descriptor and video
location.
This AG encoded in XML format is described here step by
step, through a simple API example.

!"#$%&%$%'!
(((!)%*%+#$#*,-.(/01-$-0.2"#"'!
((((((!3%+#(4%56#2"$%&'(%)*+,#"7'
((((((!89/#(4%56#2"-./'0'&"7'
((((((!:#;%65$,4%56#(4%56#2"123"7'
((((((!<06*=#(4%56#2"45,678"7'
(((!7)%*%+#$#*,-.'
(((!)%*%+#$#*,06$(/01-$-0.2"9"'!
((((((!3%+#(4%56#2":))&+,;,#"7'
((((((!89/#(4%56#2"<)=>*'"7'
((((((!<06*=#(4%56#2"45,678"7'
(((!7)%*%+#$#*,06$'

Figure 4: XML data exchanged: Input and output parame-
ters metadata

The figure 4 describes an input parameter and an out-
put parameter in the API. Thanks to XML, this format
can be easily parsed to get the different information about
the input parameter, like its type and its default value.
Each different parameter use its own Parameters in or
Parameters out tag with a different position number.

!"#$%&%$%'!
!!!(%)%*#$#)+,-./01,$,0-2"#"'!!
!!!!!!3%*#.4%56#2"$%&'(%)*+,#"7'
!!!!!!89/#.4%56#2"-./'0'&"7'
!!!!!!:#;%65$+4%56#.4%56#2"123"7'
!!!!!!<06)=#.4%56#2"45,678"7'
!!!7(%)%*#$#)+,-'

!(%)%*#$#)+06$./01,$,0-2"#"'
...!3%*#.4%56#2"9))&+,:,#"7'
...!89/#.4%56#2";)<=*'"7'
...!<06)=#.4%56#2"45,678"7'
!7(%)%*#$#)+06$'

!()0=#11+"#$%&%$%'
...!3%*#.4%56#2"7&)>'((#"7'
...!>(+%&)#11.4%56#2"#?@A1A1A#"7'
...!(0)$.4%56#2"B1B1"7'
...!<06)=#.4%56#2"45,678"7'
...!?#5/'
!!!!!!C'&'!/%'!CDE7!)F!/%'!G&)>'((A
...!7?#5/'
!7()0=#11+"#$%&%$%'

...!@,�+"#$%&%$%'

......!3%*#.4%56#2""7'

......!>(+%&)#11.4%56#2"#?@A1A1A#"7'

......!(0)$.4%56#2"B11B"7'

......!<06)=#.4%56#2"8H$7"7'

......!A0B,-.50B,-2""./C&2"".7'

...!7@,�+"#$%&%$%'
!7"#$%&%$%'

!8,*#5,-#.,&2"45,$IJ'*I.'#"'!
...!<,B-%5.,&2"45,$IJ'*I.'#,8I0.K*#"...............
................6-,$2"F&KJ'(".*,*#D5%112"".
................*,*#89/#2"".#-=0&,-B2""..................
................E5,-FGH)#;2""7'!
!78,*#5,-#'!

!IJ.$,*#5,-#2"45,$IJ'*I.'#".,&2"45,4L#"'!
....!I-=H0).,&2"$1".0;;1#$2"1".6-,$2"F&KJ'("7'!
....!I-=H0).,&2"$#".0;;1#$2"#".6-,$2"F&KJ'("7'!
....!I--0$%$,0-.,&2"4..)/K/I).,#,$1"................
........................$9/#2"7K&KJ'/'&,I.,#"!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!.1$%)$2"$1".#-&2"$1"'!
...........!K#%$6)#.-%*#2"$%&'(%)*+,#"!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!4%56#2"123"M'!
...........!K#%$6)#.-%*#2">))&+,:"!4%56#2""M'
....!7I--0$%$,0-'
!7IJ'

Figure 5: XML data exchanged: Process metadata

!"#$%&%$%'!
!!!(%)%*#$#)+,-./01,$,0-2"#"'!!
!!!!!!3%*#.4%56#2"$%&'(%)*+,#"7'
!!!!!!89/#.4%56#2"-./'0'&"7'
!!!!!!:#;%65$+4%56#.4%56#2"123"7'
!!!!!!<06)=#.4%56#2"45,678"7'
!!!7(%)%*#$#)+,-'

!(%)%*#$#)+06$./01,$,0-2"#"'
...!3%*#.4%56#2"9))&+,:,#"7'
...!89/#.4%56#2";)<=*'"7'
...!<06)=#.4%56#2"45,678"7'
!7(%)%*#$#)+06$'

!()0=#11+"#$%&%$%'
...!3%*#.4%56#2"7&)>'((#"7'
...!>(+%&)#11.4%56#2"#?@A1A1A#"7'
...!(0)$.4%56#2"B1B1"7'
...!<06)=#.4%56#2"45,678"7'
...!?#5/'
!!!!!!C'&'!/%'!CDE7!)F!/%'!G&)>'((A
...!7?#5/'
!7()0=#11+"#$%&%$%'

...!@,�+"#$%&%$%'

......!3%*#.4%56#2""7'

......!>(+%&)#11.4%56#2"#?@A1A1A#"7'

......!(0)$.4%56#2"B11B"7'

......!<06)=#.4%56#2"8H$7"7'

......!A0B,-.50B,-2""./C&2"".7'

...!7@,�+"#$%&%$%'
!7"#$%&%$%'

!8,*#5,-#.,&2"45,$IJ'*I.'#"'!
...!<,B-%5.,&2"45,$IJ'*I.'#,8I0.K*#"...............
................6-,$2"F&KJ'(".*,*#D5%112"".
................*,*#89/#2"".#-=0&,-B2""..................
................E5,-FGH)#;2""7'!
!78,*#5,-#'!

!IJ.$,*#5,-#2"45,$IJ'*I.'#".,&2"45,4L#"'!
....!I-=H0).,&2"$1".0;;1#$2"1".6-,$2"F&KJ'("7'!
....!I-=H0).,&2"$#".0;;1#$2"#".6-,$2"F&KJ'("7'!
....!I--0$%$,0-.,&2"4..)/K/I).,#,$1"................
........................$9/#2"7K&KJ'/'&,I.,#"!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!.1$%)$2"$1".#-&2"$1"'!
...........!K#%$6)#.-%*#2"$%&'(%)*+,#"!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!4%56#2"123"M'!
...........!K#%$6)#.-%*#2">))&+,:"!4%56#2""M'
....!7I--0$%$,0-'
!7IJ'

Figure 6: XML data exchanged: Video metadata

Figure 5 and figure 6 describe respectively metadata about
the process described by the API and inform about treated

video location. Most of the process metadata are about lo-
cation of the process too. Moreover, it encapsulates the
identification parameters (login and password) for the video
server. If identification is needed to call process too, it can
be easily added in the process metadadta one the same way.

!"#$%&%$%'!
!!!(%)%*#$#)+,-./01,$,0-2"#"'!!
!!!!!!3%*#.4%56#2"$%&'(%)*+,#"7'
!!!!!!89/#.4%56#2"-./'0'&"7'
!!!!!!:#;%65$+4%56#.4%56#2"123"7'
!!!!!!<06)=#.4%56#2"45,678"7'
!!!7(%)%*#$#)+,-'

!(%)%*#$#)+06$./01,$,0-2"#"'
...!3%*#.4%56#2"9))&+,:,#"7'
...!89/#.4%56#2";)<=*'"7'
...!<06)=#.4%56#2"45,678"7'
!7(%)%*#$#)+06$'

!()0=#11+"#$%&%$%'
...!3%*#.4%56#2"7&)>'((#"7'
...!>(+%&)#11.4%56#2"#?@A1A1A#"7'
...!(0)$.4%56#2"B1B1"7'
...!<06)=#.4%56#2"45,678"7'
...!?#5/'
!!!!!!C'&'!/%'!CDE7!)F!/%'!G&)>'((A
...!7?#5/'
!7()0=#11+"#$%&%$%'

...!@,�+"#$%&%$%'

......!3%*#.4%56#2""7'

......!>(+%&)#11.4%56#2"#?@A1A1A#"7'

......!(0)$.4%56#2"B11B"7'

......!<06)=#.4%56#2"8H$7"7'

......!A0B,-.50B,-2""./C&2"".7'

...!7@,�+"#$%&%$%'
!7"#$%&%$%'

!8,*#5,-#.,&2"45,$IJ'*I.'#"'!
...!<,B-%5.,&2"45,$IJ'*I.'#,8I0.K*#"...............
................6-,$2"F&KJ'(".*,*#D5%112"".
................*,*#89/#2"".#-=0&,-B2""..................
................E5,-FGH)#;2""7'!
!78,*#5,-#'!

!IJ.$,*#5,-#2"45,$IJ'*I.'#".,&2"45,4L#"'!
....!I-=H0).,&2"$1".0;;1#$2"1".6-,$2"F&KJ'("7'!
....!I-=H0).,&2"$#".0;;1#$2"#".6-,$2"F&KJ'("7'!
....!I--0$%$,0-.,&2"4..)/K/I).,#,$1"................
........................$9/#2"7K&KJ'/'&,I.,#"!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!.1$%)$2"$1".#-&2"$1"'!
...........!K#%$6)#.-%*#2"$%&'(%)*+,#"!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!4%56#2"123"M'!
...........!K#%$6)#.-%*#2">))&+,:"!4%56#2""M'
....!7I--0$%$,0-'
!7IJ'

Figure 7: XML data exchanged: Annotation Graph (Time-
Data)

Finally, figure 7 is a classical use of AGlib (Annotation
Graph library) with definition of two time anchor and one
AG in between. This AG contains, at the beginning, the
minimal data: input parameters with default values and
empty output results.
So, this format enables to represent all needed metadata.
The user of the Annotation Tool has just to fill some param-
eters, like the video to use, and add each anchor and each
annotation he needs. Afterward he will fill in those anno-
tations with the desired input parameters and their values.
When it is done, he sends this XML and the A3 will decode
what it has to do. To send the result, it will automatically
create result Annotation (and anchor if it need an anchor
couple for each frame), fill their value, and send them.

5. Software development
We need a software library for network programming,
which allows to develop this fairly simple architecture. De-
velopment constraints are that this system must be multi-
platform and multi-language - including for the annotation
software : RealBasic, C/C++ and Java - therefore we ex-
clude proprietary libraries such as Java RMI or Twisted.
Most of the time, the data to be transmitted are already
in XML format, so a string can suffice. To achieve this
kind of system two types of library are distinguished: the
middleware - ICE (ZeroC, URL), CORBA (ObjectManage-
mentGroup, URL) - and the Webservices - SOAP (W3C,
URL), XML-RPC (XML-RPC, URL). The main difference
between these two categories is that the first one, the mid-
dleware, is based on the use of objects and method calls on
these objects, while the second one, web-services, is based

4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies

51

on the use of messages sent to URLs. It should be noted
that each of these technologies meet our expectations, with
different degrees of difficulty and complexity. We decided
to use SOAP for the first specification of this architecture
because it meets our needs in a simple way and it is totally
open-source.

6. Security
In this system, we need security measures especially con-
cerning the video corpus database. Indeed, those video files
are not necessarily publicly accessible. To implement a suf-
ficient security level, we propose two components: a secure
transfer protocol, HTTPS, to transfer data by SOAP ; and a
SFTP protocol for the transfer of video between the video
file host and A3 or Annotation Tool.

7. Conclusion
In conclusion we propose a communication system archi-
tecture to easily add and call automatic treatments support-
ing annotation task in existing annotation tools.
Thanks to our specifications and the use of SOAP for soft-
ware development, this architecture is multi-platform and
multi-language (including RealBasic, C/C++ and Java) and
the model used for data exchange is adaptable to many
annotation formats. Furthermore, this model contains ev-
ery needed information like location of the process to call,
video to use, input and output parameters. The system is
composed of four parts : the Annotation Tool (AT), the
Automatic Annotation Assistants (A3), the A3 Supervisor
(A3S) and a Video File Server (VFS). All communications
between those entities are made through SOAP and are se-
cured.
The programming of this system is underway during the
project Dicta-Sign, and will enable to do evaluations of the
contribution of automatic annotation process during anno-
tation tasks
For future work we intend to enable asynchronous commu-
nication between AT and A3 in order to avoid waiting for
the end of a long process (more than few seconds) and en-
able a deferred query for results. We also would like to
enable time synchronized communication between the AT
and interactive applications like the Signing avatar synthe-
sizer (Kennaway et al., 2007) or Signing space annotation
tool (Lenseigne and Dalle, 2005).

8. Acknowledgements
The research leading to these results has received fund-
ing from the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement
no 231135.

9. References
S. Bird and M. Liberman. 2001. A formal framework for

linguistic annotation. Speech Communication, 33(Issues
1-2):23–60, January.

A. Braffort, A. Choisier, C. Collet, P. Dalle, F. Gianni,
B. Lenseigne, and J. Segouat. 2004. Toward an annota-
tion software for video of sign language, including image
processing tools and signing space modelling. In Proc.

of 4th International Conference on Language Resources
and Evaluation - LREC 2004, volume 1, pages 201–203,
Lisbon, Portugal, May.

T. Hanke and J. Storz. 2008. ilex - a database tool for in-
tegrating sign language corpus linguistics and sign lan-
guage lexicography. In Proc. of 6th International Con-
ference on Language Resources and Evaluation, LREC
2008, pages W25–64–W25–67, Marrakesh, May.

T. Hanke. 2002. ilex - a tool for sign language lexi-
cography and corpus analysis. In Proc. of 3rd Interna-
tional Conference on Language Resources and Evalua-
tion, LREC 2002, pages 923–926, Las Palmas de Gran
Canaria, Spain.

J.R. Kennaway, J.R.W. Glauert, and Zwitserlood I. 2007.
Providing signed content on the internet by synthesized
animation. ACM Transactions on Computer-Human In-
teraction, 14(3):15/1–19, September.

M. Kipp. 2001. Anvil - a generic annotation tool for multi-
modal dialogue. In Proc. of 7th European Conference on
Speech Communication and Technology (Eurospeech),
pages 1367–1370.

F. Lefebvre-Albaret and P. Dalle. 2009. Body posture es-
timation in a sign language video. In Proc of The 8th
International Gesture Workshop, Feb.

B. Lenseigne and P. Dalle. 2005. Using signing space as a
representation for sign language processing. In Proc. of
6th International Gesture Workshop - GW 2005, pages
25–36, Berder Island, France, 18-20 May. Springer-
Verlag.

ObjectManagementGroup. URL. Corba documentation.
http://www.omg.org/technology/documents.

S.C.W. Ong and S. Ranganath. 2005. Automatic sign lan-
guage analysis: A survey and the future beyond lexical
meaning. IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 873–891.

T. Schmidt, S. Duncan, O. Ehmer, J. Hoyt, M. Kipp,
D. Loehr, M. Magnusson, T. Rose, and H. Sloet-
jes. 2008. An exchange format for multimodal anno-
tations. In Proceedings of the 6th International Lan-
guage Resources and Evaluation (LREC’08), pages
207–221, Marrakech, Morocco, may. European Lan-
guage Resources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2008/.

S. Theodorakis, A. Katsamanis, and P. Maragos. 2009.
Product-hmms for automatic sign language recognition.
In Proceedings of the 2009 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, vol-
ume 00, pages 1601–1604. IEEE Computer Society.

W3C. URL. Soap documentation.
http://www.w3.org/TR/soap/.

P. Wittenburg, H. Brugman, A. Russel, A. Klassmann, and
H. Sloetjes. 2006. Elan: a professional framework for
multimodality research. In Proc. of the 5th Interna-
tional Conference on Language Resources and Evalua-
tion (LREC 2006), pages 1556–1559.

XML-RPC. URL. Xml-rpc documentation.
http://www.xmlrpc.com/spec.

ZeroC. URL. Ice documentation.
http://www.zeroc.com/download/Ice/3.4/Ice-3.4.0.pdf.

4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies

52

