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Abstract
We investigate the automatic phonetic modeling of sign language based on phonetic sub-units, which are data driven and without any
prior phonetic information. Visual processing is based on a probabilistic skin color model and a framewise geodesic active contour
segmentation; occlusions are handled by a forward-backward prediction component leading finally to simple and effective region-based
visual features. For sign-language modeling we propose a modeling structure for data-driven sub-unit construction. This utilizes the cue
that is considered crucial tosegment the signal into parts; at the same time we alsoclassify the segments by implicitly assigning labels
of Dynamic or Static type. This segmentation and classification step disentanglesDynamic from Static parts and allows us to employ
for each type of segment theappropriate cue, modeling and clustering approach. The constructed Dynamic segments are exploited at
the model level via hidden Markov models (HMMs). The Static segments are exploited via k-means clustering. Each Dynamic or Static
part, exploits the appropriate cue related to the movement. We propose that the movement cues are normalized in order to be translation
and scaleinvariant. We apply the proposed modeling for further combination of the movement trajectory individual cues. The proposed
approaches are evaluated in recognition experiments conducted on the continuous sign language corpus of Boston University (BU-400)
showing promising preliminary results.

1. Introduction
Sign languages, i.e., languages that essentially convey in-
formation via visual patterns, commonly serve as an al-
ternative or complementary mode of human communica-
tion. Visual patterns, as opposed to the audio ones used in
the oral languages, are formed by hand shapes and manual
or general body motion, lip movements and facial expres-
sions. Their expressiveness facilitates human interaction
and exchange of information not only in the existence of
hearing-impaired people but also in situations where speech
is impractical, e.g., in loud workspaces. However, effi-
cient communication by these means is only feasible be-
tween specially trained interacting parties. In this context,
automatic sign-to-text and text-to-sign translation can be
viewed as the intermediate technological modules that can
partially lift this restriction. Moreover automatic sign lan-
guage recognition may have contributions across other are
as as linguistics for the study of sign languages or for the
semi-automated processing of corpora.
Early attempts on automatic Sign Language Recog-
nition (SLR) were restricted to simple recognition
tasks [Ong and Ranganath2005] similarly to cases of
speech recognition a few decades ago. An informal cor-
respondence of the word in spoken language is a sign
unit, given that sign languages tend to be monosyllabic
[Emmorey2002]. There are several metaphors between
sign and speech recognition that allow for the exchange of
methods between the two areas. However, there exist points
of difference too. A diversity that also has practical effects
concerns phonetic sub-units: There is not yet a well-defined
unit equivalent to the phoneme in speech. Another differ-
ence concerns the multiple parallel cues that are articulated
during sign language generation. In this paper, as far as
the segmentation, modeling and recognition are concerned,
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we focus on automatic data-driven modeling of sub-units
without any phonological or linguistic information.
The field of SLR is certainly in the focus of quite intense re-
search lately [Ong and Ranganath2005]. It is considered to
be a multilevel problem and it poses significant challenges
regarding visual processing and information stream model-
ing for recognition. [Vogler and Metaxas2003] broke down
signs into their constituent sub-units using the basic ideas
of the Movement-Hold model [Liddell and Johnson1989]
and applied successfully the so-called Parallel HMMs.
[Bauer and Kraiss2001], on the other hand worked also
at the sub-unit level exploring a data-driven approach
for modeling the intra-sign units. They cluster inde-
pendent frames utilizing K-means. [Fang et al.2004] and
[Han et al.2009] have also proposed approaches for data-
driven sub-unit modeling. They employed clustering by
considering segments and not only independent frames as
[Bauer and Kraiss2001] at the feature level, taking advan-
tage of the dynamics that are essential in sign language.
Modeling at the sub-unit level provides a powerful method
in order to increase the vocabulary size and deal with more
realistic data conditions.
The main objective of the proposed modeling approach
is the automatic segmentation and construction of data-
driven sub-units: these sub-units are the intra-sign primi-
tive segments that shall be reused to reconstruct signs that
share similar articulation parameters. We are inspired by
both perceptual and linguistic evidence [Emmorey2002,
Liddell and Johnson1989] on the functionality of the mul-
tiple cues. Among all cues the ones that we heavily exploit
next are based on the planar (2D) coordinates of the domi-
nant hand’s centroid, and some of its products. We shall re-
fer to these features from now on as themovement-position
cues. Besides, movement and position are among the main
characteristics that describe a sign [Emmorey2002].
Based on simple movement, position measurements, we
proceed on the automatic sub-unit modeling of sign lan-
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guage at the model level, that refers to the modeling of
intra-sign segments. This modeling involves the synergy
of the multiple cues and the modeling structure that these
cues are incorporated: 1) the partitioning of segments into
dynamic or static with respect to their dynamics; we em-
ploy for each sign unit, a model based segmentation at the
state level, that apart from the segmentation assigns also
labels to the segments. 2) The modeling of the static or dy-
namic segments depending on the label that they were as-
signed in the previous modeling step. Each type of segment
shall be modeled by the cues and the model that are more
appropriate for each case. Given the segmented sign we are
equipped with a prosperous initialization step to face ap-
propriately the modeling the dynamic vs. static intra-sign
segments. For the case of dynamic segments, our goal is
to cluster not the independent frames as if they were in
a common pool [Bauer and Kraiss2001], neither the fea-
ture frames sequences as segments themselves at the feature
level [Fang et al.2004,Han et al.2009]. Instead, we propose
to hierarchically cluster whole dynamic models (HMMs)
[Smyth1997] based on a similarity measure among mod-
els via their parameters. Another point to stress is that the
models are first normalized wrt. 1) the initial segment’s
position, for each segment, and 2) the maximum scale of
the movement’s trajectory. These normalization steps are
crucial, since by incorporating them we end up model-
ing the actual movement data independently to the exist-
ing mixed scales or initial positions: this makes the mod-
els more compact, increases the training data per model,
and reduces the total number of models required. For the
case of static segments, the main measurement that charac-
terizes them is the one of position, corresponding to more
clear postures on which the velocity has been on average
close to zero. We evaluate the proposed methods on real
data from the Boston-University continuous American Sign
Language corpus (BU400) [Dreuw et al.2008]. In the ex-
periments we explore a variety of feature streams and evalu-
ate the efficacy of the proposed modeling scheme in prelim-
inary automatic recognition experiments showing promis-
ing results. These experiments investigate the efficacy of
the employed features, as well the integration of the multi-
ple movement-position cues.

2. Visual Processing of Sign Language

2.1. Segmentation and Tracking

For the segmentation of the video frames we are
based on the Geodesic Active Regions (GAR) approach
[Paragios and Deriche2002], as this has been adapted on
previous work [Diamanti and Maragos2008] for sign lan-
guage processing. The GAR are deformable 2D contours,
which evolve to minimize an energy functional, designed to
meet the needs of the segmentation process. The intensity
image is partitioned into two separable regions, one being
the union of the skin-colored regions, and the other con-
sisting of the rest of the image pixels, referred to as back-
ground. We adapt the GAR model to introduce a new force
for skin segmentation.

Fcolor = log ((Ps(~x))/(Pb(~x))) + cg(I) (1)

(a) (b)

Figure 1: (a) Likelihood ratio per pixel belonging to skin
or not, shown as a grayscale image. (b) Segmentation after
employing GAR on the likelihood ratio map.

whereI is the image,Ps, Pb denote the probability of a cer-
tain pixel~x belonging to the skin or background regions,
respectively, andg(I) is the edge-detection stopping func-
tion. To estimate the probabilitiesPs andPb we employ
two probabilistic models to account for the skin and back-
ground color, respectively. After the estimation ofPs and
Pb by taking their ratio we result with a measure of a pixel
belonging to skin. The above likelihood ratio map is then
used as a force in the GAR model enforcing the curve to
converge eventually to the edges that separate the skin re-
gion from the background. The result of the hand detection
that we use is shown in Fig. 1. Due to the dynamic nature of
sign language articulation, the skin color regions of interest
may occlude each other. For these cases we employ tech-
niques in order to disambiguate occlusions such as linear
forward-backward prediction and template matching.

2.2. Feature Summary

Employing the segmentation and tracking process, we ex-
tract features related to the position and the movement.
More specifically using the fitted ellipses on each hand
we extract the features related to these ellipses such as
x, y centroid coordinates. In addition, we construct fea-
tures which are products from the x,y coordinates of the
hands’ centroids, such as the velocityvel(t) = [ẋ; ẏ], the
accelerationacc(t) = [ẍ; ÿ] and the instantaneous direction
dir(t) = [ẋ; ẏ]/(ẋ2 + ẏ2)1/2. For the scope of our current
modeling and recognition we are using only the x,y coor-
dinates of the dominant hand centroid using as reference
point the centroid of the signer’s head and its aforemen-
tioned products.

3. Continuous Sign Language Recognition
We tackle the issue of sub-unit probabilistic modeling in or-
der to deal with continuous sign language recognition. We
propose 1) the organization of the modeling in a tree-like
modeling structure that employs on each modeling level the
appropriate feature(s) with the appropriate modeling de-
pending on the functionality of the features; 2) the normal-
ization of the features that are modeled: We focus in this
way on the actual underlying phenomena we wish to tackle
and avoid from getting our modeling consumed on mixed
factors; 3) the incorporation of the dynamicsat the model
level – and not at the feature level of separate frames or se-
quences of frames’ level. We consider that it is both 1) the
modeling structure and 2) the modeling withnormalization,
that are important as it is discussed next.
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Figure 2: The 2-state HMM topology that is employed for
segmentation and implicit classification of the segments.

3.1. Model-based Segmentation and Classification

Modeling the Velocity Cue Our goal is to separate the
so called from now on, “dynamic” from the “static” parts
w.r.t. movement. This is the level of segmentation and
classification of the segmented parts of the signal: dynamic
parts shall correspond to movements and static parts to non-
movements. This approach is inspired by linguistic model-
ing [Liddell and Johnson1989] of “movements and holds”.
We assume that movements correspond to high on average
velocity, and non-movements to low relative velocity. Al-
though the fuzziness of the ‘high’ and ‘low’ terms we ap-
propriately incorporate them by adopting a suitable model-
based approach. The feature that shall be utilized for this
characterization is thevelocity, whereas theacceleration
could add further detail. The velocity feature vector con-
sists of the dominant hand’s centroid velocity that is con-
structed as the norm of the coordinate derivatives. Our goal
is met if we consider the HMM structure of two states, as
shown in Fig. 2. This allows the entrance and the exit from
both states and the full transition from each state to the
other, since the dynamic or static parts may alternate one
another and do not obey any grammar rule.
Gloss Specific ModelingNext, we create one model for
each gloss that is trained using all realizations of the spe-
cific gloss. Each HMM gloss model models the velocity
profile of the corresponding gloss. Each one of the HMM
states results in modeling a single velocity level. Given the
population of data from large portions of the training set,
the two state levels correspond to a low- and a high-level
of the corresponding feature, i.e. velocity. This is further
understood if we observe the velocity distribution over the
different realizations for a specific gloss in Fig. 4(a). Af-
ter training each HMM we perform a Viterbi alignment for
each realization given the gloss resulting to the most prob-
ablesegmentation points at the state leveltogether with the
labels of the velocity profiles. An example of segmentation
obtained for one instance of the sign “ADMIT” is depicted
in Fig. 4(b) for the feature level, whereas Fig. 3 shows the
actual frames of the segments (subsampled).
Automatic vs. Manual SegmentationOne way to eval-
uate the proposed segmentation approach is by comparing
its output with the corresponding manual annotation by ex-
perts. At this point we show the results of a preliminary
such effort. Figure 5 presents both the automatic and man-
ual annotation1 for a realization of the sign “ADMIT”. For
the automatic production of both segmentation points and
the classification of the segments we make use of the veloc-

1The manual annotation has been provided by Annelies Braf-
fort at CNRS-LIMSI.

Figure 3: Segmentation using the velocity cue for one in-
stance of the sign “ADMIT”. Each row corresponds to a
different segment.
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Figure 4: (a) Velocity distribution (histogram) superim-
posed with the fitted (b) Segmentation shown superimposed
on the velocity profile for an instance of the sign ADMIT.

ity modeling providing two different labels. By comparing
the results it seems that the automatic segmentation via the
proposed approach is on average close to the manual seg-
mentation points.
The proposed model-based approach provides various ad-
vantages: 1) we get not only the segmentation but also the
result of a classification since we have encapsulated implic-
itly the dynamic and static characteristics into the states of
the same model. 2) Another asset is that we don’t need
to define any threshold manually (as other approaches for
segmentation at the feature level), since these are handled
inherently after setting the model parameters.

3.2. Modeling Dynamic Segments

We tackle next the issue of intra-sign sub-unit modeling at
the HMM model level instead of the feature level. In this
way we take advantage of the explicit dynamic modeling at
the state level that the HMMs yield. Dynamic modeling is
crucial for the modeling of movement. After all, HMMs
have been employed successfully in other applications
of sign language modeling too [Vogler and Metaxas2003].
Afterwards, a model level approach adds up a probabilistic
viewpoint that can be further exploited, and finally fits well
with the automatic recognition framework.
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Figure 6: Trajectories of dynamic movements mapped onto the 2D signing space: (a) Without any normalization. (b) After
normalization to the initial position. (c) After normalization to scale. (d) After normalization to both the initial position
and scale.

Figure 5: Automatic vs. Manual Segmentation and seg-
ments’ classification for a realization of the sign “ADMIT”.

3.2.1. Feature Normalization
Initial Position Our goal in this task is to model the dy-
namics of movement during the signs. The main feature for
each dynamic segment is themovement trajectory. Each
position sequence is initiated from the previous actual posi-
tion that is arbitrary. The modeling of such features, leads
to the consumption of the modeling effort due to the in-
creased variance that the arbitrary initial positions of the
movement trajectories introduce, so as to account for all
different initial positions. This is encountered by normal-
izing the feature segments, each one with its corresponding
initial position. This step results on the translation invari-
ant movement modeling, i.e. independently to the initial
position. An example of this normalization is presented in
Fig. 6(a,b): we present the movement trajectories as they
are mapped onto the initial 2D signing space before they are
employed in the sub-unit construction process; we demon-
strate thesame trajectories with and without normalization.
Moreover, normalization methods are well-known in the
ASR community [Rabiner1989]. Another advantage of the
normalization is the increase of the data requirements per
model and at the same time we decrease the total number
of models required.

Scale Similarly to the above, scale also affects the model-
ing of movement trajectories. Scale normalization of each
movement results in scale invariant modeling, increase of
data examples per model, end more efficient modeling with
less models. At the same time, we do keep the scale param-
eter itself for further incorporation and modeling as a sep-
arate feature. An example of this normalization is shown
in Fig. 6(a,c): the figure shows the same segments before
they are employed in the sub-unit construction procedure
with and without normalization. Finally Fig. 6(d) shows
the same trajectories after both scale and initial position
normalization. It shall be next more efficient to incorpo-
rate these normalized segments in the corresponding HMM
models instead of the non-normalized, since they shall cap-

ture the actual dynamics independently to both the initial
position (compare with Fig. 6(a,c)), and the maximum scale
(compare with Fig. 6(b,c)).

3.2.2. HMM Clustering
We initialize the segments by first applying the segmen-
tation procedures, as it has been described in the pre-
vious Section 3.1.. Given that the segments contain
movement our goal is to cluster whole dynamic models
(HMMs) [Smyth1997] that correspond to these movement
trajectories. Clustering states at the model level has been
employed succesfully in ASR applications. Herein we clus-
ter not just the states, butwhole HMMs. Thus, we fitN
3-state HMMs, one for each individual sequence or seg-
ment Si, i = 1 . . .N . Afterwards we use a similarity
measure between pairs of HMM modelsHk, k = 1, 2,
by adopting among proposed approaches in the literature
[Juang and Rabiner1985] that are based on the Kullback-
Leibler divergence. Similarly we employ

D(H1, H2) =
∑

O
H1

i

1

Ti
log

P (O
H1

i
|H1,S

H1

i
)

P (O
H1

i
|H2,S

H2

i
)

whereOHk

i corresponds to the observation sequences that
have been generated from each of theHk model, of length
Ti and log P (OHk

i |Hk, S
Hk

i ) is the log probability of the
observation given the HMM model and the optimum state
sequenceSHk

i , for k = 1, 2. The sequences used to com-
pute the log probabilities are generatively constructed by
eachHk model employing20 sequences. The distance
similarity matrix among all models is exploited via an ag-
glomerative hierarchical clustering algorithm. We end up
with the total likelihood of the specific clustering, given the
number of clusters employed.

3.3. Dynamic Sub-Units for Each Feature

Next, we explore the modeling of features that are appro-
priate for dynamic segments modeling. The output of the
clustering on the HMM level corresponds to a partition on
the feature space. Each cluster in this partition is defined
as a distinct sub-unit, presented next for different cases of
features.
Movement TrajectoriesAfter the normalization steps each
segment is modeling the plain normalized trajectory in the
2D planar signing space. We show in Fig. 7(b) indicative
sub-units: these are clusters that have been constructed by
the HMM hierarchical clustering at the model level, and
are then mapped onto the 2D signing space. This map-
ping retains the sub-unit identity that is encoded by means
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Figure 7: The trajectories for different sub-units as they have been mapped on the 2D signing space. With different color
we represent different sub-units that correspond to the different clusters. (a)Trajectories of sub-units obtained using as
feature the movement trajectories (P)without any normalization. (b)Trajectories of sub-units that incorporate both scale
and initial position normalization. (c) Trajectories of sub-units that incorporate the Direction cue after normalization of the
trajectories to the initial position. (d) Trajectories for two different sub-units that correspond to different scales.

of color in the presented figures. In Fig. 7(a) we show a
case of sub-units as a result of clustering, but without the
normalization steps. It is evident by comparing with the
previous case (Fig. 7(b)) that the modeling is much looser
since the models are consumed totally on the explanation of
the different initial positions or scales. The non-normalized
constructed sub-units as shown mapped on the original 2D
signing space make it hard to understand what exactly each
cluster represents. The clusters after normalization actu-
ally implicitly incorporate direction information. This is
something expected as the modeling contains the direction
information encapsulated with the geometry of the whole
trajectory. As a matter of fact, each model’s state from the
first to the last explains points in the trajectory that have on
average increasing distance from the segments initial posi-
tion.

ScaleWe may have normalized with the scale of each tra-
jectory, being the maximum distance of all points in a tra-
jectory, but this information shall not be disregarded. It is
modeled on its own in order to investigate how it affects
the modeling. We show in Fig. 7(d) indicative sub-units:
these are clusters that have been constructed by the cluster-
ing at the model level, and are afterwards mapped on the 2D
signing space. This mapping retains the sub-unit identity or
equivalently the cluster index that is encoded by means of
color in the presented figures. The presented sub-units are
presented to model trajectories entirely based on their scale
independently to their direction.

Direction The sub-units constructed by the direction fea-
ture show similar results as the ones that model the nor-

malized trajectories. As expected each sub-unit consists
of movements with similar on average direction over time.
Figure 7(c) shows indicative examples of movements over
the same or different clusters having similar on average or
different directions respectively.

3.4. Dynamic Sub-Units for Multiple Features

In the previous section we presented the sub-unit construc-
tion for the dynamic segments using a single cue at each
time for each sub-unit type. Thus we constructed sub-units
that account for single different characteristics of a move-
ment such as the direction, the scale or the movement tra-
jectory. Next, we explore sub-unit construction for the dy-
namic segments by using for each sub-unit multiple cues.
This extension is seamlessly incorporated given the dis-
cussed framework. As mentioned in Section 3.2.2. the sub-
unit clustering is based on HMMs. In order to account for
multiple features during sub-unit construction we employ
a multi-stream HMM instead of one simple single-stream
HMM. More specifically by incorporating both direction
and scale into a multi-stream HMM we create multiple-cue
sub-units that model movements based jointly on their di-
rection and their scale. This sub-unit construction is shown
via the corresponding trajectories that correspond to the dis-
tinct sub-units of Fig.8. In these, instead of the different
directions (as seen in Fig. 7(c)) we have created sub-units
that explain at the same time the direction for each one of
the different scales.
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Figure 8: The trajectories for four different sub-units
mapped on the 2D signing space represented with differ-
ent color/marker. Sub-units account for the multiple-cues
of both direction and scale of the dynamic segments.
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Figure 9: Partitioning of the 2D signing space by K-means.
Different colors discriminate the sub-unit.

3.5. Modeling Static Segments

Given the discrimination and separate modeling of the dy-
namic segments, the remaining segments correspond to the
low velocity profiles. We modelonly these static positions
and not all positions as they lay across time within move-
ment segments. After applying k-means clustering to the
non-normalized positions we get a partitioning of the static
positions relative to the head of the signer. Figure 9 shows
the constructed sub-units as they are mapped on the 2D
signing space.

4. Lexicon: Recombining the Dynamic and
Static Segments

4.1. Lexicon Construction

After decomposing the dynamic and static segments for
separate modeling, we re-compose them via the lexicon so
as to form the complete signs via a concatenation of the
sub-units at a symbolic level. Each sub-unit is in this case
a ‘symbol’ that is uniquely identified by the feature that
has been employed for its construction and the index that
has been assigned during the clustering procedure. This
lexicon is completely data-driven and does not employ any
linguistic information. The lexicon re-composes the two
levels of 1) the Dynamic Movement Segments (D) and the
2) Static Position Segments (S). An example of three differ-
ent lexicons that have been obtained using Position (P) for
the static segments and Direction (D) or Movement Trajec-
tories (SPn) or Scale (S) for the dynamic segments respec-
tively is shown in Fig. 10.

Figure 10: Lexicon sample for two different type of fea-
tures (from left to right) SPn, S for the dynamic and P for
static segments.

4.2. Multiple Pronunciations

The realization of signs during continuous natural sign-
ing introduces factors that increase the articulation vari-
ability. Among the reasons responsible for these multiple
pronunciations is the existence of features that do not re-
main constant during each gloss articulation. For instance
there might be cases of the same gloss that is represented
by the same sequence of movements but in multiple real-
izations that involve different initial positions. An example
of varying pronunciation for a specific gloss is illustrated
by the sample lexicons shown in Fig. 10. Each line in a lex-
icon sample consists of 1) a gloss identifier concatenated
by 2) an index that corresponds to the pronunciation real-
ization case. Figure 10 includes two cases of features for
the Dynamic segments combined in all cases with the Posi-
tion feature for the Static segments. In the shown example,
gloss “BECAUSE” is being mapped to three different sub-
unit sequences. These specific sub-unit sequences share the
first sub-unit of static modeling, while the second one adds
at a movement sub-unit, e.g. MSPn1, and the third one adds
another static sub-unit.

4.3. Sub-Unit sequences to Multiple Glosses Mapping

Among the reasons responsible for these multiple pronun-
ciations is the non-sufficient during this stage of modeling
w.r.t. the features employed. For instance there might be
cases of glosses that are represented by the same sequence
of movements-positions but they involve different hand-
shape configurations that are not accounted yet. Such a case
are signs “WITH” and “FOOTBALL” which share common
sequence of movements-positions but different handshape
configuration. Another factor is the model order we em-
ploy, or in other words how loose is the sub-unit clustering
we apply. For example if we use a small number of clus-
ters in order to represent all space of movements, although
we might have used sufficient features, multiple different
movements shall be mapped to the same sub-unit creating
looser models.

5. Recognition Experiments
Experimental configuration
In the experiments described we use only the front cam-
era video stream. Among the whole corpus, we restrict our
processing on six videos that contain stories narrated from
a single signer2. We utilize 50 randomly selected signs

2Videos are identified namely as: accident,
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among the most frequent ones. We employ 60% of the data
for training and 40% for testing. This partitioning samples
data from all videos, and among all realizations per sign in
order to equalize gloss occurrence. For the evaluation of
the recognition results we employ the standard measure of
accuracy in the sub-unit level and the gloss level.
Experiments: Next we describe recognition experiments
that evaluate the main aspects discussed. 1) We exam-
ine the incorporation of the segmentation and classification
component referred to as Static vs. Dynamic Classifica-
tion; this step affects also the adapted modeling w.r.t the
employed multiple cues and clustering. 2) Another contri-
bution discussed is the feature normalization for the Dy-
namic parts that on its turn affects both the modeling and
the recognition results. 3) Finally, we further evaluate the
incorporation of multiple cues in the Dynamic parts mod-
eling. The employed cues are encoded as Direction (D),
Movement Trajectory after scale and initial-position nor-
malization (SPn), Scale (S) and non-normalized Position
(P). The results contain both gloss-level and sub-unit level
accuracies.
Number of Sub-Units: The number of sub-units we use in
each case is depended on the existing experimental dataset
and on prior linguistic information. The dynamic segments
employ 24 sub-units given motivation on the different type
of movements (8 for each of straight or curved or other
more complex movements). We use four sub-units for scale
modeling and 22 sub-units for the static segments’ sub-
units which corresponds to different but arbitrary places of
articulation. These numbers imply the total number of sub-
units employed on each recognition experiment described
next and are shown on Table 1. Note that for tasks that
are to be compared we employ equal number of sub-units.
More sub-units imply a more complex task. Another point
to stress, (see also the discussion in Section 4.), is that the
gloss level results should be viewed given the “single sub-
unit sequence mapping to multiple glosses” due to the miss-
ing cues (e.g. handshape). The above gloss accuracy con-
siders a gloss as correct if it exists in the set of targets of
the specific sub-unit sequence. This is the caseeven if other
glosses are present in the same set. That is, the recognition
performance evaluation functions towards our favor even if
there are multiple glosses mapped from a specific sub-unit
sequence.
Single-Stream Continuous SL Recognition: Here, we
evaluate the efficacy of the various movement-position cues
employed in single stream recognition experiments and at
the same time without incorporating the Dynamic-Static
Classification. Figure 11(c,d) shows the results for the four
single cue cases: P, D, S and SPn. These results should be
seen under the following point of view. The sub-unit accu-
racy is dependent each time on the complexity of the task:
For the case of S the employed number of sub-units is much
lower compared to the other single cue cases thus the high
performance is for a much easier task (see Table 1).
Dynamic-Static Segmentation and Classification:In this
case we compare two variants. The first variant evaluates
the modeling that exploits the Dynamic-Static Classifica-

biker buddy, boston la, football, lapd story
and siblings.

tion (DSC) obtained during segmentation. The second one,
corresponds to the case in which we employ only the seg-
mentationwithout the Dynamic-Static Classification (no-
DSC) of the segments. For the first case above (DSC) we
employ for the Dynamic segments the cues of D, SPn and S.
On the contrary for the static segments we employ only the
P cue. For the second case of no-DSC all segments share
the same cue. For this case among all multiple-cue combi-
nations we show the one that performs best (SPn-S-P). The
incorporation of the DSC is encoded in the Fig. 11 by the
“+” symbol, e.g. A+B shall correspond to the A cue for the
dynamic modeling and the B cue for the static. Where two
cues are concatenated by “-” as in A-B, this corresponds to
the plain concatenation via multiple streams.

First, we should note that by comparing the single cue ex-
periments with the DSC multiple cue case the latter show
improved performance. The overall recognition perfor-
mance for the DSC case Fig. 11(a,b). outperforms the no-
DSC case Fig. 11(c,d). More specifically, using the Posi-
tion (P) cue naively combined with other features (S, SPn,
D) implies increased model variance. On the contrary, see
Fig.11(a,b), when the cues (SPn, D, S) are modeled plainly
in the dynamic parts and the Position cue (P) is only in-
corporated on the static modeling the results are improved
significantly.

Feature Normalization: The importance of normalization
is observed for the no-DSC case since the SPn cue outper-
forms the non-normalized P cue. For the multiple-cue DSC
case on which the P is better incorporated, the SPn+P per-
forms much higher than the non-reported accuracy of P+P
(i.e. non-normalized cue in the Dynamic modeling result-
ing on 38% gloss accuracy).

Multiple Cues in Dynamic Modeling: By incorporating
multiple cues in the Dynamic modeling as shown in the
DSC case, see for instance D-S+P and SPn-S+P compared
to S+P, SPn+P, D+P in Fig.11(a,b), there are slight im-
provements, that should be considered given the number
of sub-units reported in Table 1.

6. Conclusions

We propose a modeling structure that incorporates
movement-position cues in an unsupervised manner. Each
cue is adopted with the appropriate modeling given its func-
tionality during sign language articulation. The modeling
is based on the discrimination between Dynamic and Static
cases of the movement-position cues, which provides a seg-
mentation and classification of the segments. Secondly,
for each type of modeling we incorporated the appropriate
cues after normalization. The dynamic sub-units are con-
structed by clustering at themodel level. The evaluation of
the proposed multiple-cue modeling approach in recogni-
tion experiments on the BU400 continuous sign language
corpus shows promising results. However, in order to be
able to reach more mature conclusions, we shall 1) incor-
porate phonological and linguistic information, 2) as well
as handshape information, that is currently explored via a
model based approach and shall be integrated in a common
framework.
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Figure 11: Recognition performance:(a,b) Gloss and Sub-unit accuracy of multiple cues while incorporating Dynamic-
Static Classification (DSC), (c,d) Gloss and Sub-unit accuracy of single and one multiple cue without incorporating DSC.

Table 1: Feature identifier corresponding to the recognition experiments and number of sub-units employed.

Feature S D SPn P S+P SPn-S-P SPn+P D+P D-S+P SPn-S+P
# SUs 4 46 46 46 4+22(46) 24x4+22(118) 24+22(46) 24+22(46) 24x4+22(118) 24x4+22(118)
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