
Employing signed TV broadcasts for automated learning of British Sign
Language

Patrick Buehler1, Mark Everingham2, Andrew Zisserman1

1Department of Engineering Science, University of Oxford, UK
2School of Computing, University of Leeds, UK

patrick@robots.ox.ac.uk

Abstract
We present several contributions towards automatic recognition of BSL signs from continuous signing video sequences: (i) automatic
detection and tracking of the hands using a generative model of the image; (ii) automatic learning of signs from TV broadcasts of single
signers, using only the supervisory information available from subtitles; (iii) discriminative signer-independent sign recognition using
automatically extracted training data from a single signer. Our source material consists of many hours of video with continuous signing
and aligned subtitles recorded from BBC digital television. This is very challenging material visually in detecting and tracking the signer
for a number of reasons, including self-occlusions, self-shadowing, motion blur, and in particular the changing background; it is also a
challenging learning situation since the supervision provided by the subtitles is both weak and noisy.

1 Introduction
The goal of this work is to automatically learn British Sign
Language (BSL) signs from TV footage using the supervi-
sory information available from subtitles broadcast simulta-
neously with the signing (see Figure 1). Previous research
in sign language recognition has typically required man-
ual training data to be generated for the sign e.g. a signer
performing each sign in controlled conditions – a time-
consuming and expensive procedure.
The main idea is to use a given English word to select a set
of subtitles which contain the word – these form the posi-
tive training set – and a much larger set of subtitles that do
not contain the word – these form the negative set. The sign
that corresponds to the English word is then found using a
multiple instance learning approach. This is a tremendously
challenging learning task given that the signing is continu-
ous and there is certainly not a one to one mapping between
signs and subtitle words.
In order to learn a sign we require that it is signed several
(more than 5) times by a single signer within one broadcast.
However, we show that by adding an additional discrimina-
tive training phase, we are able to recognize this sign when
signed by new signers within a restricted temporal search
region.
Previous work on automatic sign extraction has considered
the problem of aligning an American Sign Language sign
with an English text subtitle, but under much stronger su-
pervisory conditions (Farhadi and Forsyth, 2006; Nayak et
al., 2009). Cooper and Bowden (2009) aim to automati-
cally learn signs using the a-priori data mining algorithm,
although without hand shape cues.

Outline. Knowledge of the hand position and hand shape
is a pre-requisite for automatic sign language recognition.
Section 2 presents our method for hand detection and track-
ing which uses a generative model of the image, account-
ing for the positions and self-occlusions of the arms. The
results using this method exceed the state-of-the-art for the
length and stability of continuous limb tracking.

Figure 1: Example results. The signs for “golf” and “tree”
performed by two different signers are learned automati-
cally. Our data is TV footage with simultaneously broad-
cast subtitles. Using an upper body pose estimator (Sec-
tion 2), we find the location of the hands and arms in all
frames. Knowing the hand position in each frame, signs
are automatically learned from TV footage using the su-
pervisory information available from subtitles (Section 3).
With this method, a large number of signing examples can
be extracted automatically, and used to learn discriminative
sign classifiers (Section 4).

Section 3 describes our method for learning the transla-
tion of English words to British Sign Language signs from
many hours of video with simultaneous signing and sub-
titles (recorded from BBC digital television). A multiple
instance learning framework is used to cope with the mis-
alignment between subtitles and signing and noisy supervi-
sion. Using the method we can learn over 100 signs com-
pletely automatically.
Lastly, Section 4 shows how the automatic recognition of
signs can be extended to multiple signers. Using automati-
cally extracted examples from a single signer we train dis-
criminative classifiers and show that these can successfully
recognize signs for unseen signers.

2 Hand and arm detection
In this section we describe our method for locating a
signer’s hands in the video. Previous approaches to hand
tracking have applied skin colour models (Cooper and
Bowden, 2007; Holden et al., 2005; Farhadi et al., 2007;
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Figure 2: Upper body model. The pose is specified by
11 parameters – 5 for each arm and an additional binary
parameter b indicating which arm is closer to the camera
and hence visible in the case that the arms overlap. The
shape of the head and torso and position of the shoulders are
estimated in a pre-processing stage separate to estimation
of the arm configuration.

Starner et al., 1998) or sliding window hand detectors
(Kadir et al., 2004). These methods perform poorly when
the hands overlap or are in front of the head, and lose
track due to the ambiguities that routinely arise, result-
ing in poor estimation of hand position or unreliable as-
signment of hands to left or right. In contrast, by using a
full upper body model (Figure 2) and accounting for self-
occlusion our method proves capable of robust tracking for
long videos, e.g. an hour, despite the complex and contin-
uously changing background (the signer is overlaid on the
TV programme). Figure 5 shows example output of the
tracker.
The remainder of this section outlines our upper body pose
estimator which tracks the head, torso, arms and hands of
the signer; further details can be found in Buehler et al.
(2008). In the following, we refer to the arm on the left side
of the image as the “left” arm, and respectively the arm on
the right side of the image as the “right” arm.

2.1 Approach
Estimation of the signer’s pose is cast as inference in a
graphical model of the upper body. To reduce the complex-
ity of modelling and inference, the pose estimation process
is divided into two stages (see Figure 3): (i) the shape of
the head and torso and the position of the shoulders are es-
timated using a 2-part pictorial structure. This is relatively
straightforward, and is described in Buehler et al. (2008);
subsequently, (ii) the configuration of both arms and hands
are estimated as those with maximum probability given the
head and torso segmentations.

Generative model. Formally, given a rectangular sub-
image I that contains the upper body of the person and
background, we want to find the arm and hand configura-
tion L = (b, l1, l2, ..., ln) which best explains the image,
where {li} specifies the parts (limbs) and b is a binary vari-
able indicating the depth ordering of the two arms. In our
application we deal with n = 6 parts: the left and right up-
per arms, the lower arms and the hands. The appearance
(e.g. colour) and shape of the parts are learned from man-
ual annotation of a small number of training images. The
background is continuously varying, and largely unknown.

Every part li = (si, αi) is specified by two parameters:
scale (i.e. length of a part modelling foreshortening) si and
rotation αi, and by the part to which it is connected. The
connections are in the form of a kinematic chain for the left
and right arm respectively (see Figure 2).
We define the probability of a given configuration L condi-
tioned on the image I to be

p(L|I) ∝ p(L)
N∏
i=1

p(ci|λi)
∏

j∈{LL,LR}

p(hj |lj) (1)

where N is the number of pixels in the input image, ci is
the colour of pixel i, and hj is a HOG descriptor computed
for limb j (see below).
The formulation incorporates two appearance terms (de-
scribed in more detail below) modelling the agreement be-
tween the image I and configuration L. The first, p(ci|λi),
models the likelihood of the observed pixel colours. Given
the configuration L, every pixel of the image is assigned a
label λi = Λ(L, b, i) which selects which part of the model
is to explain that pixel (background, torso, arm, etc.). The
depth ordering of the two arms is given by the binary vari-
able bwhich specifies which arm is closer to the camera and
hence visible in the case that the arms overlap. The “la-
belling” function Λ(L, b, i) is defined algorithmically es-
sentially by rendering the model (Figure 2) in back-to-front
depth order (the “painter’s algorithm”) such that occlusions
are handled correctly. For a given pixel, the colour likeli-
hood is defined according to the corresponding label. Note
that the pixel-wise appearance term in Eqn. 1 is defined
over all pixels of the image, including background pixels
not lying under any part of the model.
The second appearance term, p(hj |lj), models the likeli-
hood of observed gradients in the image (Figure 3c). This
is based on Histogram of Oriented Gradient (HOG) (Dalal
and Triggs, 2005) templates for the left and right lower
arms, learned individually for different angles and scales.
The HOG descriptor captures local information about im-
age edges and shading with a controlled degree of photo-
metric and spatial invariance. By using these descriptors,
we exploit both boundary and internal features to determine
the position and configuration of a limb.
The third term, p(L), models the prior probability of con-
figuration L. This places plausible limits on the joint an-
gles of the hands relative to the lower arms, and enforces
the kinematic chain.

Complexity of inference. There are 11 degrees of free-
dom in the model: 5 for each arm and 1 for the depth order-
ing. The state spaces of the arm parts are discretised into
12 scales and 36 orientations. The hand orientation is re-
stricted to be within 50 degrees relative to the lower arm and
discretised into 11 orientations. Hence, the total number of
possible arm configurations is 2 × ((12 × 36)2 × 11)2 ≈
1013. Brute force optimisation over such a large parame-
ter space is not feasible – the method described in the next
section addresses this problem.

2.2 Computationally Efficient Model Fitting
The vast number of possible limb configurations makes
exhaustive search for a global minimum of the complete
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(a) Input image (b) Colour term (c) Gradient term (d) Torso/head shape (e) Arm pose

Figure 3: Overview of pose estimation process. Pose estimation for a given image (a) is performed using colour-based
likelihoods (b) and likelihoods based on image gradients (c). The colour term in (b) is visualised by assigning the posterior
probability for skin and torso to red and green colour channels respectively. The visualisation of the gradient term in (c)
shows, for a given HOG template with fixed orientation and foreshortening, the likelihood at all locations in the image,
where red indicates high likelihood. The example shown is for the right lower arm with rotation and foreshortening set to
the ground truth values. Note the maximum is at the true centre point of the right lower arm in the image. Using the colour
term (b) the head and torso can be segmented (d). The arm pose (e) is then estimated using the estimated torso and head
shape, and both colour and gradient terms.

cost function infeasible. We therefore propose a fast ap-
proach based on a stochastic search for each arm, using
an efficient sampling method (Felzenszwalb and Hutten-
locher, 2005) to propose likely candidate configurations.
Tree-structured pictorial structures are well suited for this
task since samples can be drawn efficiently from this dis-
tribution (Felzenszwalb and Huttenlocher, 2005). How-
ever, they have several shortcomings explained in Buehler
et al. (2008), e.g. the over-counting of image evidence. We
show that by combining a sampling framework to hypothe-
sise configurations with our full modelling of occlusion and
background to assess the quality of the sampled configura-
tions, we obtain the robustness of our complete generative
model with the computational efficiency of tree-structured
pictorial structure models.
The posterior distribution from which samples are drawn is
given in Felzenszwalb and Huttenlocher (2005) as

p (L|I) ∝ p (L)
n∏

i=1

p (Ci|li) (2)

where L = (l1, ..., ln) defines the configuration of each
part and Ci refers to the pixels covered by part i. p(L) is
defined as in Section 2.1 and places plausible limits on the
joint angles of the hands relative to the lower arms.
The appearance term, p (Ci|li), is composed of the prod-
uct of pixel likelihoods using colour distributions modelled
by mixtures of Gaussians, and edge and illumination cues
added through HOG descriptors.
Sampling from Eqn. 2 is facilitated by the restriction to
tree-like topologies and can as a result be performed in time
linear in the number and configurations of parts (Felzen-
szwalb and Huttenlocher, 2005).

Improvements in sampling efficiency. When using a
sampling method to propose plausible arm locations, it is
important that the true arm configuration is contained in
the set of samples. In this respect the tree-structured picto-
rial structure sampler is insufficient; for example, given an
image where a part is partially or completely occluded, the
associated probability for this part to be generated from its
true location can be very low. To increase the probability of

and maybe take out a tree from somewhere and letting in a bit more light or something like that

a 50 ft crane, is attempting tree planting on a mammoth scale in readiness for a grand occasion

His Royal Highness from Saudi Arabia wanted to know about the history of the trees

One thing that always strikes me about the roundabout, is it's got this huge urn in the middle of it

Figure 4: Example training data for the target sign
‘tree’. The top three rows are positive subtitle frame se-
quences (each around 20 seconds long), selected because
they contain the text word ‘tree’. However, the sign only
appears in the first two (outlined in yellow). The final row
is an example negative subtitle sequence which does not
contain the text word ‘tree’ and also does not, in fact, con-
tain the sign for tree. Signs are learnt from such weakly
aligned and noisy data.

sampling the true configuration, we propose several modifi-
cations in Buehler et al. (2008), such as sampling from the
max-marginal instead of the marginal distribution which is
typically used.

3 Automatic sign learning
This section outlines our approach for automatically learn-
ing signs from signed TV broadcasts. We describe how
weak supervision is extracted from subtitles, visual descrip-
tion and matching of signs, and a multiple instance learning
method for learning a sign despite the weak and noisy su-
pervision. A more detailed discussion of the method can be
found in Buehler et al. (2009).
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Figure 5: Sample of tracking results on hour-long sequences. The estimated pose is shown for uniformly spaced frames
in three hour-long sequences with different signers. The pose is qualitatively highly accurate in all frames.

3.1 Automatic generation of training data
By processing subtitles we can obtain a set of video se-
quences labelled with respect to a given target English word
as ‘positive’ (likely to contain the corresponding sign) or
‘negative’ (unlikely to contain the sign); this is illustrated in
Figure 4. Hand detection using our articulated upper body
tracker (Section 2), and feature extraction are then applied
to extract visual descriptions for the sequences.
To reduce the problems of polysemy and visual variability
for any given target word we generate training data from the
same signer and from within the same topic (e.g. by using
a single TV program). Even when working with the same
signer, the intra-class variability of a given sign is typically
high due to ‘co-articulation’ where the preceding or follow-
ing signs affect the way the sign is performed, expression
of degree (e.g. ‘very’) or different emotions, and varying
locations relative to the body.

3.1.1 Text processing
Subtitle text is extracted from the recorded digital TV
broadcasts by simple OCR methods (Everingham et al.,
2006) (UK TV transmits subtitles as bitmaps rather than
text). Each subtitle instance consists of a short text, and
a start and end frame indicating when the subtitle is dis-
played. Typically a subtitle is displayed for around 100–
150 frames.
Given a target word specified by the user, e.g. “golf”, the
subtitles are searched for the word and the video is divided
into ‘positive’ and ‘negative’ sequences.

Positive sequences. A positive sequence is extracted for
each occurrence of the target word in the subtitles. The
alignment between subtitles and signing is generally quite
imprecise because of latency of the signer (who is trans-
lating from the soundtrack) and differences in word/sign
order, so some ‘slack’ is introduced in the sequence ex-
traction. Consequently, positive sequences are, on average,
around 400 frames in length. In contrast, a sign is typically

around 7–13 frames long. This represents a significant cor-
respondence problem.
The presence of the target word is not an infallible indicator
that the corresponding sign is present – examples include
polysemous words or relative pronouns e.g. signing “it” in-
stead of “golf” when the latter has been previously signed.
We measured empirically that in a set of 41 ground truth
labelled signs only 67% (10 out of 15 on average) of the
positive sequences actually contain the sign for the target
word.

Negative sequences. Negative sequences are determined
in a corresponding manner to positive sequences, by search-
ing for subtitles where the target word does not appear. For
any target word an hour of video yields around 80,000 neg-
ative frames which are collected into a single negative set.
The absence of the target word does not always imply that
the corresponding sign is not present in the negative se-
quences. This is because different words might be signed
similarly, or a sign might be present in the video but not
appear in the subtitles (e.g. referred to as “it”).

3.1.2 Visual processing
A description of the signer’s actions for each frame in the
video is extracted by tracking the hands via our upper body
model (Section 2). Descriptors for the hand position and
shape are collected over successive frames to form a win-
dow descriptor which forms the unit of classification for
learning. The temporal length of the window is between 7
and 13 frames, and is learnt for each sign.

Hand shape description. The ‘shape’ of the hands is ex-
tracted by segmentation, and represented by a HOG de-
scriptor (Dalal and Triggs, 2005; Kjellström et al., 2008).
HOG descriptors are chosen for their ability to capture both
boundary edges (hand silhouette) and internal texture (con-
figuration of the fingers), and the contrast normalization
they employ gives some invariance to lighting.
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To deal with cases where the hands are overlapping or
touching, descriptors for each hand and also for the pair
of hands are extracted in parallel.

3.2 Measuring visual distance between signs
Our learning approach seeks temporal windows of video
which represent the same sign, where a window is the con-
catenation of visual descriptors for a sequence of frames. In
order to compare two such windows a distance function is
needed which captures differences in position and motion
of the hands and their appearance.
For each frame t of the window, each hand is described by
a vector x(t) = 〈xpos,xdez,xdezP 〉 which combines hand
position (pos) and shape (dez) for both the individual hand
and the combined hand pair (subscript P). The descriptor
for a window X is the concatenation of the per-frame de-
scriptors x(t).
In BSL one hand is dominant, while the position and ap-
pearance of the other hand is unimportant for some signs.
We build this into our distance function. Given two win-
dows X and X′ the distance between them is defined as the
weighted sum of distances for the right (dominant) and left
(non-dominant) hands:

D(X,X′) = dR(X,X′) + wLdL(X,X′) (3)

where dL(·) and dR(·) select the descriptor components for
the left and right hands respectively. The weight wL ≤
1 enables down-weighting of the non-dominant hand for
signs where it does not convey meaning. We refer to two
windows X and X′ as showing the same sign if their dis-
tance D(X,X′) is below a threshold τ . Section 3.3 de-
scribes how wL and τ is learnt for each individual target
sign.
The distance measure for the left and right hand alike is
defined as a weighted sum over the distances of the posi-
tion, shape and orientation components (we drop the hand
subscript to simplify notation):

d(X,X′) = wposdpos(X,X
′) + wdezddez(X,X′)

+ woridori(X,X
′) (4)

The hand shape distance ddez is computed with invariance
to rotation. This is in accordance with linguistic sign re-
search (Brien, 1993), where different hand configurations
are described separately by shape (ddez) and orientation
(dori). The position distance dpos is designed to be invari-
ant to small differences in position, since repetitions of the
same sign can be performed at different positions (e.g. this
applies especially to signs performed in front of the chest).
For a detailed description of these distance functions see
Buehler et al. (2009).
The positive weightswpos, wdez andwori are learnt off-line
from a small number of training examples.

3.3 Automatic sign extraction
Given a target word, our aim is to identify the correspond-
ing sign. The key idea is to search the positive sequences
to provide an example of the sign. Each positive sequence
in turn is used as a ‘driving sequence’ where each tempo-
ral window of length n within the sequence is considered
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Figure 6: Distributions used to score template windows.
Plots (a) and (b) show the empirical distribution of errors
(bars) and the fitted exponential distribution (curve). Note
the scale on the x-axis. Plot (c) shows the temporal distri-
bution of signs within corresponding positive sequences.

as a template for the sign. We require a score function to
evaluate each template, with a high score if the template
occurs within most of the positive sequences and not often
in the negative data. The sign is determined by maximizing
the score function over all templates, over the sign specific
dominant/non-dominant hand weighting wL, and over the
threshold τ which indicates if two signing windows show
the same sign..

Multiple instance learning method. For a hypothesized
setting of the classifier parameters θ = {X̂, wL, τ}, with
template window X̂ of length n, we assign a score

S(θ) = S+(θ) + S−(θ) + St(θ) (5)

to the classifier as a function of (i) its predictions on the
positive sequences S+ and the negative set S−, and (ii) our
prior knowledge about the likely temporal location of target
signs St.
Unfortunately, when designing S+ and S−, we know that
some non-negligible proportion of our ‘ground truth’ labels
obtained via the subtitles will be incorrect, e.g. in a posi-
tive sequence the target word appears but the corresponding
sign is not present, or in the negative data the target sign is
present but not the corresponding target word. A model of
such errors is empirically learned and approximated using
exponential models (see Figure 6a,b).
The sign instances which correspond to a target word are
more likely to be temporally located close to the centre of
positive sequences than at the beginning or end. As shown
in Figure 6c, a Gaussian model gives a good fit to the em-
pirical distribution. The temporal prior pt is learnt from a
few training signs as for the score functions.

Searching for the sign by maximizing the score. Given
a template window X̂ of length n from a positive sequence,
the score function is maximized using a grid search over
the weight for the left hand wL, and over a set of similarity
thresholds τ . This operation is repeated for all such tem-
plate windows, with different lengths n, and the template
window that maximizes the score is deemed to be the sign
corresponding to the target word.
Using a per-sign window length allows for some signs be-
ing significantly longer than others. The weight wL allows
the importance of the left hand to be down-weighted for
signs which are performed by the right hand alone.
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3.4 Experiments
Given an English word our goal is to identify the corre-
sponding sign. We deem the output a success if (i) the se-
lected template window, i.e. the window with the highest
score, shows the true sign (defined as a temporal overlap
of at least 50% with ground truth) and (ii) at least 50% of
all windows within the positive sequences which match the
template window show the true sign.

Datasets. We tested our approach on 10.5 hours of sign-
ing sequences recorded from BBC broadcasts (including
subtitles), aired between 2005 and 2006, and covering such
diverse topics as politics, motoring and gardening. Signing
is performed by three different persons. The image size af-
ter cropping the area around the signer is 300× 330 pixels.

Test set. The method is evaluated on 210 words. These
words were selected and fixed before running the experi-
ments, without knowledge of the appearance of the target
signs, i.e. how the corresponding sign is performed. Selec-
tion was based on: (i) the target word must occur more than
5 times in the subtitles; (ii) the target word is a verb, noun
or adjective as opposed to linking words such as “then”,
“from”, “the”, etc.; (iii) the target word does not have mul-
tiple meanings (as opposed to e.g. the word “bank”).
The full list of signs used is given at www.robots.ox.ac.
uk/˜vgg/research/sign_language/, which also con-
tains example sequences of the detected signs.

Results. In 136 out of 210 cases (65%) we are able to
automatically find the template window which corresponds
to the target sign (see Figure 1 for two examples).
The precision-recall curve in Figure 7 (blue dashed line)
shows that the score associated with a template window
can be used as a confidence measure, giving an extremely
good guide to success: at 11% recall (23 signs) precision is
100%; at a recall of 50% (105 signs) the precision is 77%.
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Figure 7:
Precision recall
curve computed
using the score
of the template
window to rank
learned signs.

Some words in our dataset co-occur with other words in the
subtitles e.g. “prince” and “charles”, which renders the cor-
rect template window ambiguous. Often these incorrectly-
learned signs have a high associated score and hence reduce
the precision even at low recall. By using simple statistics
we can exclude 24 words from processing which leads to an
improved precision-recall curve in Figure 7 (red solid line).
We achieve good results for a variety of signs: (i) signs
where the movement of the hand is important e.g. “golf”,
(ii) signs where the hands do not move but the hand shape
is important e.g. “animal”; (iii) signs where both hands are
together to form a sign e.g. “plant”; (iv) signs which are
finger spelled e.g. “bamboo”; (v) signs which are performed
in front of the face e.g. “visitor”, which makes identifying
the hand shape difficult.
Some of the mistakes are understandable: For the word
“wood”, our result is the sign for “fire”. This is not sur-

Figure 8: Challenges for signer-independent sign recog-
nition. Repetitions of the same sign can differ in the hand
position, the hand movement, the hand shape, and even in
the number of hands involved. This is illustrated for three
instances of the sign “bad”.

prising since these two words often appeared together. The
sign “year” is difficult since the signs for “last year”, “this
year” and “next year” differ – our method picks the sign for
“next year”.

4 Signer-independent sign recognition
Having demonstrated a method for learning a sign automat-
ically, it is natural to investigate if the learnt sign can be
recognized across different signers. The problem is that the
learning method of Section 3 is built on the restrictions that
apply to a single signer, for example that the lighting, body
size and position do not vary significantly and also that
(apart from co-articulations) the same sign is performed in
a consistent style. These restrictions do not apply when
the signer changes (see Figure 8) – signs can be performed
with different speeds, variable extents, at varying locations,
or with slightly different hand shapes. In many cases, these
variations are due to the differences in signing between dif-
ferent people, such as local accents, or personal traits. The
visual features and restrictions of Section 3 which took ad-
vantage of the single-signer situation are not sufficient for
signer-independent recognition.
However, in this section we demonstrate that by adding a
discriminative training stage signs can be recognized and
localized in new signers. The experiments illustrate the ex-
tent to which our features (hand trajectory and hand shape)
generalise to previously unseen signers.

4.1 Method
Our goal here is to detect signs in previously unseen signers
using the automatically learnt signs from Section 3 within
a temporally restricted search space. That is, instead of de-
tecting a given sign in a full TV show (1 hour long), we
search for it within short “positive sequences” extracted
from around the word occurrences of the corresponding En-
glish word in the subtitles. In Section 3.3, a temporal prior
is used to favour sign occurrences near the centre of a pos-
itive sequence. In this section, instead of such a prior, we
use smaller positive sequences (on average half the length;
10 seconds long) extracted with a small offset from the
word occurrence to take the empirically observed latency
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between subtitles and signing into account (see Figure 6c).
Note that empirically the sign we aim to detect is only per-
formed in around half of the positive sequences, since the
occurrence of a subtitle word does not imply the presence
of the corresponding sign (see Section 3.1.1; although here,
the positive sequences are shorter). Therefore, even a per-
fect sign detector would have an accuracy of at most 50%.
Assume that we have learnt a sign from a training signer
using the method of Section 3. For a learnt sign we have
an automatically learned template window X̂ with highest
score, and all windows which are similar to the template,
i.e. with a distance to X̂ below a threshold τ of the pair-
wise distance measure. We consider these windows as a
positive training set.
We compare two methods for generalizing from the sign
learnt from the training signer to recognizing this sign for
other signers. (i) Template matching: The pairwise dis-
tance measure from Section 3.2 is used as classifier to iden-
tify signs which are similar to the learnt template window
X̂. (ii) Discriminative training: A support vector machine
(SVM) classifier is trained to detect the sign. Training data
consists of the positive examples from the training signer,
and negative examples taken from all the other signs con-
sidered.
For a given English word, a positive sequence for each word
occurrence in the subtitles is extracted. Our aim is to find
the corresponding sign in each of these sequences. This is
achieved in a sliding window fashion by searching for the
window with highest confidence according to (i) the corre-
sponding SVM output or (ii) similarity to the learnt tem-
plate. We search over different window lengths, since the
duration of a sign in a positive sequence is unknown. In this
way, one window is selected from each sequence.

Features. We use information from two cues: hand po-
sition and hand shape for each frame as described in Sec-
tion 3. The hand shape cue is based on a set of hand ex-
emplars which are used to describe the hand shape for each
frame (think visual words); see Buehler et al. (2009) for
a detailed description. The position of the left eye is auto-
matically detected in each frame using the method of Ev-
eringham et al. (2006) and serves as reference point. Each
training sample is down-sampled to be of equal temporal
length (5 frames) – a prerequisite for SVM training.

SVM classifier. We use the LIBSVM library (Chang and
Lin, 2001) to learn a binary SVM for each of the 15 differ-
ent words in our dataset (see Section 4.2). Separate Radial
Basis Function (RBF) kernels are computed for the hand
position and the hand shape cue individually, and combined
by computing the mean. We also evaluated using the prod-
uct over the individual kernels instead, which gave compa-
rable performance.

4.2 Experiments
Dataset. Experiments are performed for 15 English
words, selected such that each word occurs more than
five times in the subtitles of a specific signer (the training
signer). The selected words are: better, Britain, car, help,
hope, house, kitchen, money, mourn, new, night, room,
start, team, and week.

For these 15 words, signing examples from the training
signer are automatically extracted using our method from
Section 3, and used to train initial SVM classifiers. Note
that this includes wrongly learned signs, as is shown in Ta-
ble 1, column “Learning - FP”. These initial classifiers are
subsequently used to extract additional signing examples
from a database of 1730 positive sequences from 6 pre-
viously unseen signers (none of them being the training
signer), each with a duration of 10 seconds. In this way,
between 58 and 192 sequences are extracted for each word
(Table 1, column “WS”).

Results. First, we automatically learn for each of the 15
English words the corresponding sign. Even though the su-
pervision provided by the subtitles is very weak and noisy,
our results are highly accurate: out of 195 automatically
extracted signing examples, 164 are correct (see Table 1,
column “Learning”). Note that only the sign for “team” is
not learned correctly (0 true positives TP, but 5 false posi-
tives FP).
From this dataset, an SVM classifier is learned for each
word, and subsequently used to detect one example of the
corresponding sign within each of the positive sequences.
We define a ranking of the detections by confidence based
on (i) the SVM decision value of the detected sign, and
(ii) the margin between (i) and the second highest decision
value within the same sequence (using non-maximum sup-
pression). We know that the sign is only performed in about
half the positive sequences (Section 4.1), hence assuming
that our detector finds a sign a little less than half of the
time (if it is performed), then the 20% highest ranked de-
tections should often be correct. Indeed, for this subset,
on average 67% of the detections show the true sign (see
Table 1, column “SVM detector”).
We further analysed the performance of our ranking func-
tion by plotting the proportion of correctly detected signs as
a function of the highest ranked detections (Figure 9, blue
curve).
The SVM classifiers used above were trained from auto-
matically extracted signing examples, including 31 exam-
ples which do not show the correct sign (see Table 1, col-
umn “Learning – FP”). We observe a slight increase in ac-
curacy if these examples are excluded from training (Fig-
ure 9, green solid curve).
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Figure 9: Sign
detection ac-
curacy. For
each classifier
the accuracy
is shown as
a function
of detection
confidence.

Comparison to template detector. We repeat the sign
detection results from this section, using as a classifier the
template-based distance function instead of the SVM ap-
proach. The results clearly deteriorate, as can be see in Fig-
ure 9 (red dotted curve) and in Table 1 (column “Template
detector”).
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Learning SVM detector Template detector
Sign WS TP FP Ratio TP FP Ratio SGR TP FP Ratio
better 95 11 2 0.85 2 2 0.50 2 2 15 0.12

Britain 98 9 1 0.90 18 13 0.58 3 1 17 0.06
car 63 15 1 0.94 6 4 0.60 4 15 4 0.79

help 150 22 1 0.96 6 3 0.67 3 15 20 0.43
hope 61 7 1 0.88 8 7 0.53 4 7 13 0.35
house 177 7 5 0.58 30 15 0.67 3 21 43 0.33

kitchen 58 7 0 1 6 0 1 3 2 24 0.08
money 102 6 1 0.86 10 3 0.77 3 7 15 0.32
mourn 77 8 0 1 10 2 0.83 2 4 11 0.27
new 183 20 4 0.83 47 7 0.87 4 2 13 0.13
night 62 8 0 1 11 0 1 3 3 4 0.43
room 126 9 0 1 10 0 1 2 2 2 0.50
start 192 17 10 0.63 26 67 0.28 5 5 5 0.50
team 151 0 5 0 0 4 0 2 0 41 0
week 135 18 0 1 20 6 0.77 2 6 23 0.21

MEAN 115 0.83 0.67 3.0 0.30

Table 1: Recognizing signs in new signers. For 15 English words, the corresponding signs are automatically learned
(Section 3), and then used to recognize the sign in new signers (Section 4). Column “WS” shows the number of positive
sequences for each word. For our automatic sign learning method, the number of correctly learned signs (TP), incorrectly
learned signs (FP), and the ratio TP/(FP+TP) is given (column “Learning”). Subsequently, additional signing examples
are detected within the 1730 positive sequences, either using the SVM framework as described in this section (column
“SVM detector”), or the automatically found sign templates for each word (see Section 3) as detectors (column “template
detector”). The number of new signers for which signing examples are extracted is given in column “SGR”. Note that the
values in the columns “SVM detector” and “Template detector” are computed using the 20% highest ranked sign detections
(see also Figure 9, blue and red curves).

5 Conclusion
We described methods for visual tracking of a signer in
complex TV footage, and for automatic learning of signs.
The framework enables learning a large number of BSL
signs from TV broadcasts using only supervision from the
subtitles. We achieve very promising results even under
these weak and noisy conditions.
We illustrated that examples automatically extracted for a
single signer can be used to recognize a given sign for
other signers provided an additional discriminative training
stage is applied. This demonstrates that our features (hand
trajectory and hand shape) generalise well across different
signers, despite the significant inter-personal differences in
signing.
Future work will concentrate on improving the accuracy
of signer-independent recognition to a complete uncon-
strained scenario where no subtitles are available.
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