
Abstract

We present the technical specification for an avatar that is compli-

ant with Animgen, the synthetic signing engine used at the Uni-

versity of East Anglia for generating deaf signing animations. The

specification will include both the basic definition required for any

standard animating avatar, and the additional parameters that An-

imgen requires to generate signing. Avatars compatible with Ani-

mgen are created using the ARPToolkit, an application developed

at UEA that has a plug-in architecture for tools that are used for

rigging an avatar mesh for animation. The toolkit also generates

the additional data needed by Animgen for each avatar.

1. Introduction
For any avatar to be animated there is a standard set of re-

quirements that must be met in the avatar file, which must

include a mesh, a skeleton, a texture, and, if facial animation

is also required, a set of morph targets. The mesh represents

the visible shape of the avatar, and, together with the texture,

defines the avatar's appearance. The skeleton, a mathemat-

ical construct in software which is not visible, has its bones

linked to the vertices in the mesh, so that changing the rota-

tion of any bone in the skeleton results in the movement of

the mesh vertices linked to it. The morph targets, also re-

ferred to as blend shapes, each represent a deformation of

the static mesh to both the area around the mouth and jaw

for speech synchronisation, and to the cheeks, eyelids, eye-

brows, and forehead for facial expressions.

JASigning is a synthetic animation system for deaf signing,

written in Java, that has been developed at UEA, taking as

input avatar-independent Gestural SiGML (Signing Gesture

Markup Language) (Elliott et al, 2004, 2007) and producing

as output motion data for any avatar. SiGML is an XML

form of HamNoSys (Hamburg Notation System) (Prillwitz

et al, 1989; Hanke, 2004) that is used by Animgen (Kenn-

away, Glauert, Zwitserlood, 2007) to generate signing ani-

mation.To achieve this JASigning requires additional

information that cannot be obtained from the standard in-

formation above, and must be provided in separate files. To

demonstrate the need for the extra data an example would

be where a sign requires that the tip of the index finger on

the right hand touches the tip of the nose. These locations

cannot be obtained from the standard specification, but are

provided in the extra files.

The ARPToolkit [ARP] was developed at UEA to provide a

unified application for creating avatars that not only met the

standard requirements for animation but also have the ad-

ditional data needed for deaf signing. Additionally, the tools

developed in the toolkit were designed to automate some of

the tasks of avatar rigging, and to provide simple interfaces

for some of the more complex tasks, such as morph target

creation, making the toolkit accessible to users who lack the

technical skills needed for the majority of commercial soft-

ware that would otherwise have to be employed.

For the purposes of the JASigning software, each ARP sign-

ing avatar is effectively defined by a set of four avatar def-

inition files.

The first of these contains binary data, the other three are

XML:

• Main Avatar Definition

• ASD, Avatar Standard Description

• Animgen Configuration Data

• Nonmanuals

2. Main avatar definition file

The main avatar definition file, avatardef.arp, contains

only the data needed for an avatar to perfom standard ani-

mations, and has none of the extra data that Animgen needs

for the generation of deaf signing. Its major components are:

2.1 Vertex List

A list of vertices that represents the mesh defining the shape

of the avatar, with texture coordinates and vertex normals

for each. Each vertex and normal is defined relative to its

linked bone(s), with the bone initially aligned along the X

axis. Meshes for the eyes, teeth, and tongue must be present,

but not contiguous with the rest of the mesh. The hair and

ears can also be modelled separately from the main mesh,

but all other parts of the avatar mesh must be a single con-

tiguous mesh. To allow realtime animation (at 25fps or

more) on an average specification machine the vertex count

of the mesh should not exceed 10,000.

2.2 Texture Map

The texture map, which may optionally be held in a separate

file or embedded in the file in a standard format such as

PNG, defines the appearance of the avatar. All texture

should be contained in a single file. For good quality a min-

imum size of 1024 X 1024 pixels is suggested.

2.3 Skeleton

The skeleton structure fits within the mesh, and includes

bones for animating the eyes, which must be child nodes of

the head bone. It must include all bone names used by An-

imgen (see asd.xml below), but can include additional bones

(e.g. metacarpals), although these will be ignored by Ani-

mgen. Bone names are all 4 character (4cc) codes.

The bone hierarchy, as specified in the asd.xml file, must

be adhered to, but is compatible with other standard hier-

archies such as H-Anim and BVH. Translations and rota-

tions for each bone are in the parent’s coordinate space, with

the transform for each bone being multiplied by its parent

Requirements For A Signing Avatar

Vince Jennings, Ralph Elliott, Richard Kennaway, John Glauert
School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK.

{V.Jennings, R.Elliott, R. Kennaway, J.Glauert}@uea.ac.uk

4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies

133

bone's transform. Zero length bones may be included on all

leaf nodes in the bone hierarchy if desired, again with

unique 4 character names. These are sometimes required in

other animation applications, and will also be ignored by

Animgen. The ARPToolkit has tools for creating skeletons

and for adjusting them to fit the avatar mesh.

2.4 Mesh-to-Skeleton Attachment Data

This data is a list of links between vertices in the mesh and

the bone(s) that will animate them, with a weight for the in-

fluence of each bone. A maximum of 4 links per vertex is

permitted, with a preferred maximum of 3. The weights of

all links to a vertex must sum to 1.0. This follows standard

industry practice for this type of data as more than 4 links

to a vertex makes weight calculations very complex. Vertex

weights are calculated in the ARPToolkit during construc-

tion of the skeleton, and their weights subsequently altered

to produce good deformation at the joints by ‘painting’ the

weights for each vertex using the mouse.

Figure 1 shows the linkage between the vertices of the arm

and the bone. The envelope determines which vertices are

assigned to the bone, and the colour of each vertex shows

the weight (between 0 and 1) that this bone applies to the

transformation for this vertex. These are typically 1 across

the centre of the bone, reducing at the joints where adjacent

bones also apply their weights.

2.5 Morph Targets

The list of morph targets contained in a standard non-sign-

ing avatar file would consist of the visemes necessary for

lip synchronisation to speech, and for facial expressions.

Each morph target represents a deformation of the mesh to

produce facial animation. A morph target includes a list of

indices for vertices in the mesh, a deformation vector for

the full displacement of the vertex (1.0), and a normal for

the fully displaced vertex. Negative amounts for morphs are

not supported, e.g. for moving eyebrows down instead of

up, so morphs for all movement directions must be pro-

vided.

For a deaf signing avatar additional morph targets are

needed, particularly for the cheeks and the tongue, which

are used for a wide range of facial gestures.

Morph names are arbitrary, and can be matched to those

used by Animgen, the synthetic signing engine used in

JASigning, by editing the avatar's nonmanuals.xml file.

Morph targets are created in the ARPToolkit, where a library

of primitive morphs are first defined for movements of the

jaw, lips, tongue, cheeks, nose, eyebrows, and eyelids. Se-

lections of these primitives are then combined to produce

the morphs for phonemes and signing mouth gestures and

uploaded into the avatar.

Figure 2 shows the vertex selection for the morph primitive

for the upper lip, with the colour coding indicating the

weighting of the transform that moves the vertices verti-

cally, with red indicating a heavier weight falling off to yel-

low for a low weight.

3. The ASD File Format

The purpose of the Avatar Standard Description (ASD) file,

asd.xml, is to define all the avatar-related data needed by

Animgen. It defines the skeleton, with the bone names and

hierarchy used by Animgen, in a reference pose that enables

Animgen to establish the correct rotation axis for elbows

and thumbs.

The ASD file also defines a set of approximately 380 feature

points on the surface of the mesh of the upper body, arms,

hands, and head, which Animgen may use as reference

points when it needs to determine locations in signing space.

On the arms and hands these points are defined on 2 axes at

each joint and again midway between each joint. Each of

these points is assigned a unique identity code recognised

by Animgen.

To simplify the task of defining the feature points, which

would otherwise have to be defined individually by hand,

tools have been developed in the ARPToolkit to carry out

ray tracing from the bones of the skeleton to intersect with

the mesh at the desired locations. This process is automatic

for the upper body, arms, and hands, with a secondary as-

Figure 1. Mesh to skeleton attachment Figure 2. Upper lip morph target

4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies

134

sisted manual process for the head locations.

In the section of an file asd.xml shown below, the skeleton

hierarchy is shown by the joint relationship “ROOT”,

“SPI1”, “SPI2”, etc, with feature points being listed

under their “owner” bones. Positions of each point are rel-

ative to their “owner”. For example T-LS is “torso front at

left shoulder”, and its “owner” is “ROOT”.

<?xml version="1.0" standalone="yes"?>

<avatarStaticData version="1.0">

<avatar name="arp-anna" version="1.0">

<skeleton scale="0.04445039">

<joint name="ROOT" position="0.000000 0.000000 0.000000" rota-

tion="0.000000 0.000000 0.707330 0.706883">

<feature name="T-LS" position="9.430 -4.333 1.636" />

<feature name="T-CS" position="9.433 0.000 1.932" />

<feature name="T-RS" position="9.436 4.333 1.638" />

<feature name="T-LC" position="7.265 -2.168 3.171" />

<feature name="T-CC" position="7.266 0.000 3.284" />

<feature name="T-RC" position="7.268 2.165 3.175" />

<feature name="T-LA" position="4.269 -2.166 2.485" />

...

<joint name="SPI1" >

<joint name="SPI2" >

<joint name="SPI3" >

<joint name="LCLR" >

....

</joint>

</joint>

</joint>

</joint>

....

</joint>

</skeleton>

</avatar>

</avatarStaticData>

4. Animgen Configuration Data File Format

The config.xml files contain the settings for controlling

many of the aspects of the synthetic signing generated by

Animgen, and is loaded by Animgen when processing a

SiGML file to produce animation. The file defines timings,

signing space, constraints, trajectories, hand shapes, con-

stants, repetitions, and rest poses.

For example, the following code defines a handshape for a

fist with the index finger extended.

<handshapes>

<finger2

specialbends="0000"

ordinarybends="4440"

extendedfingers="2"

class="fist"

/>

</handshapes>

Each finger bending consists of 4 numbers, representing re-

spectively the bends at the first, second, and third joints, and

the splay angle. For each of these, 0 represents the value

when the joint is not bent and 4 is its maximum bending.

Each handshape has two different finger bendings:"special-

bends" is the bending of the extended fingers (e.g. the index

finger for the finger2 handshape) and "ordinarybends" for

the other fingers. The thumb is not described here."extend-

edfingers" is the set of extended fingers (which includes the

thumb for some handshapes).

The ARPToolkit provides facilities to interactively set val-

ues for hand shapes in the config.xml file, reloading the

modified file and displaying the changed handshape in real

time.

Signing space for the avatar is defined in terms of the

avatar’s dimensions such as arm lengths and feature points

on the torso.
<signingspace

horiz_spacing = "0.8"

vert_spacing = "0.25"

inout_spacing = "0.15"

signspacesitesize = "1.2"

fan = "0.6"curve = "1"

nearbelly = "0.10"

torsositesize = "0.10"

neckheight = "0.02"

/>

Before processing a SiGML file Animgen will first load a

config.xml file from a directory common to all avatars. It

will then load an avatar specific config.xml file that may

contain alternative settings that will override those in the

common file. A typical example of this would be settings

for hand shapes, where variations in bone sizes between

skeletons may affect hand shapes.

5. Nonmanuals File Format

The purpose of the nonmanuals.xml file is to define how

each SiGML/HNS nonmanual feature is implemented using

the avatar’s morph targets. It maps the standard names of

nonmanuals used in SiGML/HNS to the names of the morph

targets in the main avatar definition file, or to parallel and

sequential sets of these morph targets. The mapping also in-

cludes durations and trajectories (timings) for these non-

manuals. The file also includes mappings from Sampa.

5.1 Examples.

A mapping from a SiGML name for a mouth gesture to an

avatar's morph names:

Figure 3. Feature points with reference pose

4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies

135

References

Elliott, R., Glauert, J.R.W., Jennings, V., and Kennaway,

J.R., “An Overview of the SiGML Notation and SiGML-

Signing Software System”, In Fourth International Con-

ference on Language Resources and Evaluation, LREC

2004, Edited by Streiter, O. and Vettori, C., Lisbon, Portu-

gal, pp. 98-104, 2004.

Elliott, R., Glauert, J.R.W., Kennaway, J.R., Marshall, I.,

and Safar, E., “Linguistic modelling and language pro-

cessing technologies for avatar-based sign language pres-

entation”, Universal Access in the Information Society,

vol. 6, no. 4, pp. 375-391, 2007.

Prillwitz, S., Leven, R., Zienert, H., Hanke, T., Henning,

J., et al. “Hamburg Notation System for Sign Lan-

guages—An Introductory Guide”, International Studies on

Sign Language and the Communication of the Deaf (5).

Institute of German Sign Language and Communication

of the Deaf, University of Hamburg, Hamburg, 1989.

Kennaway, J.R., Glauert, J.R.W., and Zwitserlood, I.,

“Providing Signed Content on the Internet by Synthesized

Animation”, ACM Transactions on Computer Human In-

teraction, vol. 14, 3, no. 15, pp. 1-29, 2007.

Hanke, T., “HamNoSys representing sign language data in

language resources and language processing contexts”, In

Fourth International Conference on Language Resources

and Evaluation, LREC 2004, Edited by Streiter, O. and

Vettori, C., Lisbon, Portugal, pp. 1–6, 2004.

[ARP] http://vh.cmp.uea.ac.uk/index.php/ARP

<mouth_gesture sigmlName="D01">

<parmorph>

<morph name="eee" amount="0.6" timing="x m t s m l x"/>

<morph name="ulpr" amount="0.2" timing="x m t s m l x"/>

<morph name="ulpl" amount="0.2" timing="x m t s m l x"/>

</parmorph>

</mouth_gesture>

For the SiGML mouth gesture D01 the gesture comprises

the morphs “eee” with an amount of 0.6, “ulpr” with an

amount of 0.2, and “ulpl” with an amount of 0.2. Enclosing

all three in the <parmorph> </parmorph>element indicates

that these should be combined in parallel. All parallel com-

binations of morphs must have the same timing, with the

optional “x”, in this case, at each end indicating that this

gesture should be adjusted to last the same length of time

as the manual gesture that it accompanies.

A mapping from Sampa to an avatar's morph names:
<sampa phonemes="O_I:">

<morph name="ooo" timing="m t - m t"/>

<morph name="eee" timing="m t m m t"/>

</sampa>

Here "O_I:" represents a diphthong which is mapped to two

morphs, “ooo” and “eee”, performed in sequence, each with

a different timing.

Non-facial nonmanuals. These are animations of the head,

spine, and shoulders that are expressed as "pseudomorphs"

in SiGML, but are processed by Animgen into bone anima-

tions.
<head_movement sigmlName="NO">

<morph name="HTLF" amount="0.03" timing="m t - f l"/>

<morph name="HTLF" amount="-0.03" timing="m t - f l"/>

<morph name="HTLF" amount="0.03" timing="m t - f l"/>

<morph name="HTLF" amount="-0.03" timing="m t - f l"/>

<morph name="HTLF" amount="0.03" timing="m t - f l"/>

<morph name="HTLF" amount="-0.03" timing="m t - f l"/>

</head_movement>

This produces a set of sequential bone movements of the

head from left to right - “NO”.

5.2 Durations and Trajectories

The timing attribute for each morph is a sequence of up to

7 tokens, each with codes that map to constants defined in

the config.xml file, with the following purpose:

1) Whether the morph is anchored to the start of the interval during which

it is played.

2) The attack time (the time spent ramping up from zero to the full amount).

3) The attack trajectory (the manner in which it approaches the full

amount).

4) The sustain time (the time spent holding the morph at its full amount).

5) The release time (the time spent ramping down to zero).

6) The release trajectory (the manner in which it ramps down to zero).

7) Whether the morph is anchored to the end of the interval during which

it is played.

The first and last token is either 'x' (anchored) or 'e' (elastic).

These tokens can be omitted, and default to 'x' and 'e' re-

spectively. Each time is either a real number of seconds, or

one of the following tokens:

f fast

m medium speed

s slow

- zero

Each trajectory is one of the tokens "t" (targetted) or "l"

(lax). The targetted trajectory makes a greater acceleration

and deceleration towards its endpoint. Typically one would

use "t" for everything except the release trajectory of the

last morph.

6. Conclusion
The requirements to enable an avatar to perform deaf sign-

ing in the UEA JASigning software are essentially in addi-

tion to the standard specification for any avatar that can be

animated. The only additions to the standard specification

are the extra morph targets specific to deaf signing. The rep-

resentation of the standard data can be converted to the for-

mat used in the avatardef.arp file already described. The

other additional data required for signing is held in the

asd.xml, config.xml, and nonmanuals.xml files. We believe

these additions to the requirements for a standard virtual

human character definition will be necessary in any system

that synthesises authentic animated sign language.

7. Acknowledgements

We acknowledge with gratitude that the work described

here has been partially funded under the European

Union’s 7th FrameworkProgramme, through the Dicta-

Sign project (grant 231135).

4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies

136

