
Analysis of the different methods to encode SignWriting in Unicode

Guylhem Aznar, Patrice Dalle and Clément Ballabriga
Équipe TCI and Master Camsi

IRIT-UPS, 118 route de Narbonne, 31062 Toulouse Cedex 4
E-mail: aznar@irit.fr, dalle@irit.fr, ballabriga@7un.net

 This paper lists, evaluates and discuss the solutions to encode SW in Unicode.

Abstract: SignWriting is the most complex and popular writing formalism for sign languages. Unicode is the most popular encoding
of characters aimed at unifying the various language-oriented encodings into a single format supporting every human language. This
paper focuses on the first functional layer, which gives a correspondence between a SignWriting sign and a series of bytes. This is
one of the prerequisites to represent a sign language electronically. The different possibilities to encode a given SignWriting sign are
evaluated and compared on different criteria : the Unicode space requirements, the number of bytes the storage will require, the
mathematical complexity and the side advantages offered. Keeping as much as possible of the information on how signs are written
and entered, and offering capabilities to easily compare the symbols that compose these signs is also considered, so that the encoding
can serve to study and compare how SignWriting is written. A reference encoding is then proposed, to serve as a basis for the next
layers. Other bi-dimensional writing formalisms, currently not supported by Unicode, are considered to extend the presented work.

1. SIGNWRITING
A sign language sign, corresponding to a meaning, is
transcribed in a SignWriting (SW) sign, composed of
symbols, positioned on a 2D canvas called a signbox
(Sutton, 1995).

Figure 1 : two SW signs

 Symbols correspond to static or dynamic positions or
movements of the human body, and are described in the
SymbolBank norm from the IMWA (Sutton, 2004). An
analysis of SSS-2004 shows 25 973 symbols, divided
into 8 categories, 10 groups, 50 elements, 5 variations, 6
fillings and 16 rotations.

Choosing a list of symbols from the SSS, and positioning
them into a 2D signbox, results in a infinite number of
combinations.

2. UNICODE
Unicode is simply an assignment of characters into code
points. Unicode currently offers 220+216=1 114 112
codes, split into 17 planes of 216 = 65 536 codes. Only
100 000 characters have been assigned so far, i,e, 10% of
the available code space. The first plane, also called
Plane 0 , is used for existing encodings, to allow direct
compatibility. It features a private area, a concept
inherited from Asiatic encodings, used by systems or
applications which must encode non standard characters.
Plane 1 is used for ancient languages, mathematical and
numerical symbols, and Plane 2 for rare, mostly
historic, Chinese characters. Plane 14 currently contains
non-recommended language tag characters and variation

selection characters. Plane 15 and Plane 16 are fully
reserved for private use. Unicode simply assigns a
unique number to each character. But file storage,
transfer and processing require handling these numbers
following a mapping method. Unicode offers different
ways to do such mappings, depending on constraints
such as available storage space, compatibility
requirements and interoperability, through various UTF
and UCS. mappings. UTF-32 is the best choice when
storage space or compatibility are less important than
software uniformation, and will be used by default in this
paper in an hexadecimal transliteration U+X1X2X3X4 ,
where Xn is the nth byte of an hexadecimal value X.

UNICODE ENGINES
Unicode does not deal with fonts : it simply matches first
bits and codes, following a mapping like UTF-32, then
codes and characters, following the standard
arrangement of Planes. There is no bijection between the
code and its graphical representation called “glyph”,
unlike in traditional encodings such as ISO 8859-15
“Latin 9”: there are many ways to display a similar
glyph. Matching one or more characters with a glyph is
the job of the Unicode engine. For example, the French
glyph “è” can be obtained through a single character
called “LATIN SMALL LETTER E WITH GRAVE”
which is given code U+00E8. Yet the same glyph can be
displayed with the two characters “LATIN SMALL
LETTER E” and “MODIFIER LETTER LOW GRAVE
ACCENT”, respectively U+0065 and U+02CE. The
latter could even be replaced by “COMBINING GRAVE
ACCENT” U+0300 ! Such grammar, required to
compose a glyph from characters, is called an Unicode
engine (Fanton, 1998). There are many existing Unicode
engines. The engine uses a font to represent the glyphs.
There are currently less than ten “pan-Unicode” fonts,
i.e. capable of supporting most of the glyphs Unicode
can offer.
Some languages such as Arabic or Devanagari require a
specific treatment of the glyphs. For example, in the

59

bb
i 0

n 1

ln2 card Ei bits

Arabic alphabet, most glyphs have four allographs,
depending on the position of the letter in a word :
isolated, initial, median, final. Such post-treatment of the
glyphs into graphs is done by the Unicode engine.

Figure 5 : the Arabic letter “hâ”, the words “hâ hâhâhâ”

3. USING UNICODE FOR SW
ENCODING

SW is currently encoded in SWML (Da Rocha & coll,
2001). Unicode encoding can take advantage of the
previously presented properties of Unicode : symbols
encoding, and symbols positioning can be studied as
separate problems, with the reconstruction left to the
Unicode engine, which will require a grammar. In each
approach, the following criteria must be considered :
integration into the operating systems, minimization of
the storage space required, minimization of the
mathematical cost of the Unicode engine algorithm in
CPU time, respect of the Unicode standard.

ENCODING THE SYMBOLS
The first problem is matching each symbol into a unique
number. From that code, as explained before, various
mappings will be available to encode the number into
bytes. Only two solutions are possible, depending on the
importance of the aforementioned criteria: a)
minimization of the storage space : “sequential”
approach, where symbols are not sorted into groups with
special meanings, but simply follow a sequence without
any given order b) minimization's of the CPU time :
“bitwise” approach, where symbols are grouped. Each
group corresponds to a given parameter of the symbol
such as rotation, filling, etc. Each group corresponds to a
bit field.

SEQUENTIAL APPROACH
Obviously, the easiest way to match a code to each of the
25 973 symbols is to proceed in sequence. This approach
presents however a major problem : while SSS evolves
on a yearly basis, inserting new symbols could logically
only occur at the end of the block. Since symbols are
organized following a given structure (categories,
groups, elements, variations, fillings, rotation), this
problem would be much more important than for other
languages, especially for the software treatment of the
given space: determining the parameter of a given code
would require a case-by-case analysis for symbols
outside the given space. And even in the given space,
without the addition of any symbols, determining
parameters would in the best case require modular
arithmetic to perform range comparison and check
whether a symbol belongs to a given group/category/etc.

BITWISE APPROACH

In order to minimize the CPU time, a bitwise approach
could allow to easily find a symbol though a simple bit
masking. However, this approach would increase the
space used to encode the symbols. Let us start with an
example tree of depth n, where for each level, each node
can have the same number of leaf. In SW case, each level
represents a parameter (c: category, g: group, e: element,
v: variation, f: fillings, r: rotation). Following this
simplification, each parameters can be represented as a
set, function of the level i, called Ei. Encoding requires b
bits, rounded to the next integer:

For example, the 6th level representing the rotation
parameter corresponds to set E5 since we are starting at
E0. Because there are 16 rotations, this set has 16 parts,
and thus requires 4 bits. This bitwise approach thus has a
mean costs of n-1 bits compared to the sequential
approach. However, each of the 6 parameters c,g,e,v,f,r
does not take an uniform amount of space : two different
symbols can have different numbers of variations for
example. Therefore, when encoding the variations into a
fixed-length bit field, we must consider the worst case.
Some space is wasted: it can be understood as identically
sized boxes, which are as big as one of the box is filled,
but globally are as empty as this case is rare.

COMPARING THE USE OF UNICODE SPACE
The cost of the sequential approach is known and fixed,
and could easily fit in the Plane 2. The cost of the bitwise
approach can be calculated with the previous formula.
An analysis of SSS-2004 to calculate the card Ei for each
of the 6 parameters reveals 23 bits are required. This
means the bitwise encoding will require more than one
Unicode per symbol since 223 is 8 times greater than the
total space offered by Unicode. The only possible
solution is to use a sequence of 2 unicodes. It can come
from a) an artificial extension of the Unicode space,
which is contrary to the logic of the Unicode standard
where each character must have its own code within the
Unicode space or b) the use of modifier characters.

A MIXED BITWISE APPROACH WITH
MODIFIERS
In the latter case, symbols are decomposed into a
combination of parameters like for the “è” example : it
will turn the chosen parameters into Unicode modifier
characters. This would of course reduce the required
Unicode space, but would let in exchange the storage
space bear the equivalent cost of this simplification. At
least two unicodes will be required anyway: if one
parameter is made into a modifier, say variation for
example, one Unicode is required for the 223-ln2(card Ev)=217
codes corresponding to the remaining 5 parameters, and
another Unicode is required for this modifier. Therefore,
removing n parameters approximately results in a storage
space requirements of 1+n unicodes. The approximation
is due to the possible cases where “small” parameters
could fit within a single code as cumulative modifiers,
like ”rotated left with front face exposed”. The main
interest of a mixed bitwise approach with modifiers is
using a single unicode for the main part, to follow the
Unicode logic of one code per character. For example,

60

variation and rotation requiring respectively 6 and 4 bits
could be made as a single modifier requiring 10 bits. The
main part would then require a 13 bits unicode. Deciding
which parameters will become modifiers will require a
linguistic analysis of SW. Then, deciding whether
modifiers will be encoded following a sequential or a
bitwise approach will require another comparison, on
speed, space and side benefits criterias.

COMPARING THE SPEED
A good example is calculating the speed to extract a
parameter of the code of a given symbol such as the
variation : text search operation, given the inter and intra
personal variabilities, will frequently have to extract
many parameters – and that for each symbol. Deciding to
extract the “variation” parameter follows a simplification
hypothesis, which will minimize the advantage of the
best method, because there is always the same number of
possibilities for the following parameters (rotation and
filling). Extracting the variation of a given code when a
sequential encoding is used could be done as :
int extract_variation_s(int code) {return ((c/nf*nr)%nv);}

Here c is the code, nf the maximal amount of fillings, nr
the maximal amount of rotations, and nv the maximal
amount of variations : nf=6, nr=16, nv=5. The most
costly operations are 2 modular divisions, in 16 bits since
we have less than 65 536 symbols. In the case of a
bitwise encoding, the same function would be:
 int extract_variation_b(int c){return ((c>>(br+bf))&7);}
where br is the amount of bits required to encode the
rotation, bf the amount of bits required to encode the
filling, and 7 is the decimal value of 111 binary, which is
used to mask the 3 bits of variation. Here the most costly
operations are a bit shifting on 32 bits and a bitwise
“and” on 32 bits. A practical experimentation of an AMD
Athlon XP 2400, 50 million operations take 1744 ms in
the sequential approach, versus 292 ms in the bitwise
approach. The bitwise approach with modifiers would
represent an intermediate case where extraction of the
parameters which are modifiers could require the use of
modular operations if the modifiers are encoded in a
sequential approach, while the other operations will be as
fast as the full bitwise approach. These approaches
should now be compared to SWML. The
implementations may vary, but can be simplified to the
minimal operation which will always be present when
the variation will have to be extracted from a SWML-
formatted symbol. This minimal operation is matching
the pattern where the variation parameter is stored. The
fastest possible way to perform that operation in C is
with regular expression. Supposing the regexp is already
compiled, to give a speed advantage to this approach:
regcomp(&preg,"<symbol[^>]*>[0-9]+-[0-9]+-[0-9]+-([0-9]+)-[0-

9]+-[0-9]+</symbol>",REG_EXTENDED); regexec (&preg,SWML,2,tab,

0);

This instruction is evaluated like the previous approaches
on a AMD Athlon XP 2400. However, due to its low
speed, it is only realized 50 000 times – it then takes
1788 ms. The Unicode sequential and bitwise approaches
have been put in their worst possible configuration, and
the SWML minimal step in its best possible configuration.
The Unicode approaches still respectively perform 1025
times faster for the sequential approach, and 6123 times
faster for the bitwise approach.

COMPARING THE STORAGE
REQUIREMENTS
For the sequential approach, one Unicode will be
necessary for each symbol. For the bitwise approach,
two unicodes will at least be necessary for each symbol
– regardless whether modifiers are used or not. SWML
requires 18 characters per symbol. In conclusion, the
proposed methods will use from 6 to 18 times less space.

COMPARING ADDITIONAL BENEFITS
From a video recognition perspective, a bitwise approach
would also offer the additional advantage of fuzzy
completion : in the case where the specific symbol is not
fully recognized, setting the bits to identify which
parameters were recognized (ex: rotation, element, etc.)
would be a first step – other parameters could be
prompted to the user, or guessed depending on the
context (signs previously used, etc). From a linguistic
perspective, a bitwise approach would also ease
lexicographic treatment of sign languages : for a new
unknown symbol, the recognized parameters would be
filled in the fuzzy completion, while the missing
parameters (ex: a new element) could be temporarily
assigned a code in one of the private use areas, until a
linguist can review it. From a standardization
perspective, leaving some empty space to add future SSS
symbols would cost no more than the space being wasted
by a bitwise approach, following the assumption that
“empty” groups and categories are the most likely to be
completed in the future.

ENCODING THE SYMBOLS POSITION
SWML currently does not save any order in which the
symbols are entered to create a sign, the symbols are
simply positioned in a 128x128 area. Yet saving the
order of symbols entry could be used in lexical analysis
of SW. Unicode only features composition methods, ie
grammatical ways to create glyphs from characters
which are composed. However, Everson (2002)
estimated that 8% of the remaining writing formalisms
not yet supported by Unicode would require innovative
rendering methods – such as 2D positioning for Mayan
and Egyptian hieroglyphs. Therefore, we consider
preserving the order of symbols, and offering and
extensible 2D positioning.

A POSITION AND NO RELATION
The positioning problem can be subdivided into 2
problems : positioning the symbols on a 2D signbox, and
describing the relation between the symbols. SWML
currently does not describe the relation between the
symbols, while their relation can have various meanings
such as an ordered sequence of movements, temporal co-
occurrence, contact between body segments, etc. This
relation is simply described by adding additional
symbols, which are also positioned on the canvas. This
simplifies the problem, removing the “relation” feature,
but also removes information which could be used later
on. For example, contact between symbols is not
defined. Should it be defined as a relation, this property
(contact or the lack of) between symbols could be
preserved even during magnification or minimization of
the sign. Likewise, manipulation of the symbols linked in
a spatial sequence could take advantage of that property

61

to automatically reposition the other symbols when the
symbol initiating the sequence has been moved. Such
relations could also be used to simplify the Unicode
engine grammar.

POLAR OR CARTESIAN COORDINATES
Following SWML approach and using a dedicated code
to position a symbol in the 128x128 signbox would only
require 16 384 codes, from a partially used Unicode
plane or a personal use area in the worst case. Reserved
planes, offering 216 coordinates, can even be used for a
finer positioning in 4 096x4 096 with two unicodes. If no
precision is necessary, a single reserved plane can be
used, offering 216/2 ie 256x256 scale, with a single
Unicode. The simplest solution is to decide on a center,
and give coordinates from that center. This is the solution
currently used by SWML. It could be made to keep the
sequence of entered symbols. A variation of that method
is using a dichotomies positioning, which can save space
depending on the precision needed. Yet since at least one
Unicode will be used with any method, it has no interest
and artificially complicates this solution.

RELATIVE COORDINATES
This solution removes any signbox size limit, while also
keeping the starting symbol and the order of the
sequence as entered by the user. However, the algorithm
is complex, since it needs a step-by-step reconstruction
taking into account the preceding step to construct the
sequence of symbols.

COORDINATES GIVEN BY A FUNCTION
A parameter of the coordinates could be given to a
function, encoded along, which would return the other
position. The algorithm would be as complex as the
function required to position each symbol, which could
be following the sequence under which they where
entered. This encoding would be best used with image
recognition, to track body trajectory movements.
However this would be the most complex solution, since
it would at least require a fitting function. A simplified
version of this approach could be used for relation
operators, which would then be considered as functions.

COMPARISON
The speed costs are too complex to be calculated. But
obviously, every proposed solution could be used to
position symbols on the signbox, to preserve the order
of the symbols, etc. In any case, the minimal cost will be
1 Unicode. With so many similarities and very little
advantages, it seems evident that the simplest method
should be chosen depending on the needs. The polar
coordinates were initially favored, before inter and intra-
personal variations had been identified. Its interest now
seems very limited. The relative positioning requires a
step-by-step reconstruction, which brings unneeded
complexity. No approach will provide significant
advantages in the positioning method, except in very
specific cases. Therefore, the Cartesian coordinates,
already used by SWML must be recommended. The
function based positioning method should be limited to
a) image and video interpretation, to trace trajectories
and b) relation operators, should they be implemented.

4. PROPOSED UNICODE ENCODING

SYMBOL ENCODING
We propose to support both the sequential encoding and
the mixed bitwise encoding. The pure bitwise encoding
is not proposed because is does not follow the logic of
Unicode standard, and therefore may not be accepted by
the Unicode consortium. The sequential encoding could
be immediately used to offer backward compatibility
with existing SWML systems while offering a 1000 fold
speed increase for parameter extractions and a 18 fold
space saving. The mixed bitwise approach will only be
evaluable when turning parameters into modifiers will be
agreed. Following the example where the variation and
the rotation are turned into modifiers, it will require two
unicodes, but fit within one plane since 213+210<216

This approach will also provide a 6000 fold speed
increase for the remaining parameter extractions, and
offer fuzzy editing capabilities for video recognition
software. Even if the current Unicode policy is against
giving codes to pre combined characters, such
advantages could help the request.

INTEGRATIVE POSITIONING APPROACH
A simple, non optimised, grammar, is proposed, with 3
elements: the symbol SYM, the operators OP, the
parameters PAR, taken from a reserved plane to indicate
the position. Since a sign is a set of positioned symbols,
it is terminated by the TER special operator:
sign ->partialsign TER

partialsign -> partialsign element | element

element -> SYM | OP

 OP -> PAR| PAR PAR | CONTACT | SEQUENCE

SYM -> (existing symbols)

This basic grammar could be further optimised. Yet it
provides a very simple way to position 2D Unicode
symbols at some coordinates P by default, without any
operator, from 256x256 to 4 096x4 096. It also adds two
sample operators previously suggested :CONTACT, to
indicate whether two symbols are touching, and
SEQUENCE, to indicate a sequence of movements. They
could be used as symbols or as operators. For example,
in a mixed bitwise approach with filling and rotation as
modifiers, a sample “deaf” symbol coud be:
HEAD12 10 20 FINGER FILL2ROT3 10 25 CONTACTSYMBOL 10 22 T

HEAD12 10 20 FINGER FILL2ROT3 10 25 CONTACT T

The first approach requires 11 codes, the second 9 codes.
with a 4 096x4 096 signbox – this could be further
optimised using a 256x256 signbox with a single PAR.
Each approach would then take respectively 9 and 7
codes. The same sign in SWML requires 360 codes, with
only a 128x128 signbox- between 40 and 50 times more.
Additional operators could be added with the help of
linguists, for SW or other languages needing specific
spatial management - such as Mayan hieroglyphs.

5. CONCLUSION
Unicode will bring serious speed and size improvements.
Moreover, the integrative positioning approach could be
applicable to 8% of the languages requiring it. Giving a
code to each symbol is not a complicated task for either
approach – it can be fully automated, and use the private
areas for quick prototyping until a dedicated area has

62

been granted. But officially giving a code require
describing the character (symbol) and its properties, in
details, which will be a long and complex task.
Transforming symbols into operators, thus expressing
relations, will also be a challenge for linguists. But then
Unicode will bring a real grammar to SW, and offer
interesting relational information which will be usable in
the user interface.

6. REFERENCES
Sutton V., Gleaves R. (1995), SignWriter - The world's

first sign language processor. La Jolla, CA: Ed. Center
for Sutton Movement Writing,

Sutton V. (2004), International Movement Writing
Alphabet. La Jolla, CA: Ed. Center for Sutton
Movement Writing

Da Rocha Costa A., Dimuro G. (2001) A SignWriting-
Based Approach to Sign Language Processing.
Gesture Workshap 2001, London

Fanton M. (1998) Finite State Automata and Arabic
Writing. Proceedings of the Workshop on
Computational Approaches to Semitic Languages
(COLING-ACL'98), Montréal, PQ

Da Rocha A., Dimuro G., De Freitas J. (2004) A sign
matching technique to support searches in sign
language texts. Actes du Workshop RPSL, LREC 2004
(pp 32—34) Lisboa, Portugal

Everson M. (2002) Leaks in the Unicode Pipeline. 21st
International Unicode conference, Dublin, Ireland

63

