
A Sequential Approach to Lexical Sign Description

Michael Filhol, Annelies Braffort
LIMSI/CNRS

BP 133, F-91403 Orsay cedex
E-mail: michael.filhol@limsi.fr, annelies.braffort@limsi.fr

Abstract
Sign description systems able precisely to detail how a lexical unit of a sign language is performed are not that numerous. Plus, in
the prospect of implementing such a description model for automatic sign generation by virtual characters, visual notation systems
such as SignWriting, however accurate they are, cannot be used. The Hamburg Notation System (HamNoSys) (Hanke, 1989)
together with its more computer-friendly super-set SiGML (Signing Gesture Markup Language) is about as advanced a model we
could find, and yet some problems still have to be tackled in order to obtain an appropriate sign description system. Indeed, based
on Stokoe-type parameters, it assumes every sign can/must be described with the same fixed set of parameters, each of which would
be given a discrete value. However, we argue that not all signs require all parameters, and that not all the parameters that are needed
can be given at the same time in the same way. This work underlines three problems we see with Stokoe-like descriptions, and
suggests a new approach to handling sign language lexicon description.

1. Over-Specification

The trouble when filling all parameters with values is

that they all inherit the same status. Yet often, some are
crucial to the sign in that changing them would destroy
the whole sign, whereas others are only given so as to
enable, say, a signing avatar to perform the target sign
but could well be specified differently. For instance, the
palms of both hands in the sign [WHAT]LSF need be
horizontal and facing up, but the fingers may point to
anywhere away the signer's body (fig. 1). Actually, the
direction they point to may even vary through time, as
signers usually prefer to rotate around the wrist or elbow
rather than around the shoulder. With a HamNoSys
notation, both "fingext" orientations out and out-left (for
a strong hand on the right-hand side) would define the
[WHAT]LSF sign properly, but one has to be chosen.

Figure 1: [WHAT]LSF (Moody, 1986)

The recent addition of the "..." subscript operator in

HamNoSys v4 allows to "soften" a value and change it to
a somewhat fuzzier specification. That is, used with our
example, turn the fingext out value into something like
"out or out-right or out-left". However, nothing precisely
defines this operator, and applying it to the fingext out

value will also make valid values like out-up and out-
down, which we do not want.

The source of the problem above is that the fingext
direction was "hard-wired" to a particular value, and then
softened. Instead of over-specifying and merely stating
what can be approximated, we suggest that the sign
contents should be constrained enough to define the
target sign, but that whatever is not necessary be banned
from its description. On our example, setting the palm
plane normal to an upright vector is enough about the
hand's orientation in [WHAT]LSF.

2. Parameter Dependencies
Secondly, parameter models consider the parameters

separately and each of them is assigned a distinct value,
with no regard for other parameters. In computer science
terms, none of these assignments is in the scope of
another, so each of them could be carried out in a parallel
way, i.e. all at once and independently. Though, this
does not account for inter-parameter dependencies, such
as that in [DESK]LSF (fig. 2). The strong hand movement
depends on the fingext direction (in HNS terms) of the
weak hand, whichever is chosen in the first place.

Figure 2: [DESK]LSF (Moody, 1986)

7

The issue of parameter dependencies was already
addressed and partly resolved with the new HamNoSys
"~" subscript operator. It is applicable to palm
orientation or fingext direction to make it relative to the
path of the corresponding hand. It allows descriptions
such as that of [BALL]DGS, making palm orientation
relative to its path on each hand. In [DESK]LSF however,
the dependency is not one of a hand orientation on its
path, but that of one hand's path on the other's
orientation.

Moreover, two different parameters could well
depend on a common non-parameter object, such as in
[BUILDING]LSF (fig. 3). The strong hand moves along
and close to a line, say L. Its palm is constantly facing L
and the weak hand's location and orientation is defined
as being symmetric to those of the strong hand's, with
respect to L. Both location and palm orientation of both
hands depend on the same line L. Although L is
obviously crucial to the sign as a great part of the
description depends on it, no parameter (in Stokoe's
sense) is ever equal to L, which is why we call L a non-
parameter common dependency.

Figure 3: [BUILDING]LSF (Moody, 1986)

To account for the two cases stated above, we claim

that any part of a sign description should be allowed to
make use of other parts, even of the same description.
This way, internal dependencies become part of the
description.

3. Iconic Structures

Above all, using C. Cuxac's theory (2000) of

iconicity as a framework for ours, it has become obvious
that the many possible context influences cannot be
ignored while modelling lexical description. A great part
of sign languages' beauty and power in concision comes
from the potential for signs to be altered according to the
context in which they are used, thereby switching
discourse from a conventional sign flow to highly iconic
structures (HISs). For instance, the sole sign [BOX]LSF
can be used to sign the phrase "large box" in LSF, only
the distances between the hands will be greater than the

ones involved in the plain conventional [BOX]LSF sign
(plus the signer will probably also puff his cheeks and
raise his elbows).

There are many forms of iconicity in SLs:
size&shape transfers, personal/situational transfers, use
of time lines... Formalising such features for automatic
sign generation is not trivial. Some work has been
initiated with the ViSiCAST project to include use of
proforms and signing space in particular (Hanke et al,
2002), but we found nothing close to the richness
emphasised in (Cuxac, 2000). An HIS can not only alter
the location or the hand shape involved in a sign, but also
a path, a direction, eye gaze, etc. Virtually, anything can
be acted upon, and these actions being commonplace in
SL, we claim a description model should allow signs to
behave accordingly. Back to the example above,
describing [BOX]LSF without making the distance
between the hands responsive to the contextual size
weakens the sign's re-usability.

4. A Geometrical Approach to Descriptions

We are now ready to outline a proposal for a new

sign description model whose aim is to make for the
three main problems we see with present parametric
models, stated above and summarized below :
- unnecessary parts should not appear in a description;
- the different parts should be able to refer to one

another;
- descriptions should be made flexible enough to be

responsive to context influences.

Specifying What is Needed and Allowing
Internal Dependencies

We handle the first two points using a statement-

based language, each of which is either a build statement
(B-statement) or a constraint statement (C-statement).
B-statements are used to build objects like points,
vectors or planes that can be referred to in subsequent
statements. C-statements serve the main point: a C-
statement either assigns a value to an existing object or
adds a constraint to it. Constraints are either applied to
an object itself or to one of its "slots" if it has any. A slot
is a constituent of an object that accepts geometrical
constraints but may remain unmentioned. For example,
eyebrows can be set to frown in a sign S by slotting a
value in the appropriate slot, denoted S.eyebrows.
Yet in other signs the eyebrows can stay unspecified, and
indeed they often do.

The syntax used for C-statements is close to that used
in mathematical definitions of geometrical figures
(Filhol, 2006). For example, the following C-statement
sets a correct orientation (the ori slot of the hand) for
the strong hand (the shand slot of the sign) of a sign S
by constraining its palm (the palm slot of the
orientation) to be orthogonal (the "_|_" operator) to a
direction pointing up (Up is a constant) :

8

 S.shand.ori.palm _|_ Up

The syntax used for B-statements resembles that of

variable declarations in most programming languages,
i.e. a type keyword and an identifier. Here is a B-
statement that creates a plane named P:

 PLANE P

Most probably, C-statements enrolling P will follow,

in order to constrain it and use it afterwards as an
internal dependency. For example, to make it horizontal:

 P _|_ Up

Note: Parsing such an input will require some

conflict-checking, as two contradictory C-statements
applied to an object should be rejected. Though we shall
not deal with this issue here.

With this description language, sign descriptions can

be specified as much – or indeed as little – as wanted,
which tackles the first drawback underlined in part 1.
Moreover, each part of a sign description can make use
of any other part, provided the latter has been defined
beforehand. Thus, contrary to parametric models, value
assignments are no more paralleled but made sequential,
and values are not only chosen from a fixed set but may
depend on intermediate objects (there again provided
they were built earlier on) if any are needed. An acyclic
dependency graph can then be associated with the
description, which represents the description's internal
dependencies.

Iconicity in Descriptions

Although no implementation has been done on this

issue so far, it has always been regarded as a necessary
prospect in the design of our description model. Here is
how we will extend the given language to handling
iconicity in sign descriptions.

Enabling iconicity in signs can be done by extending
the language with a new type of reference. Every time a
value or an object is expected in a statement, a call to a
context element can be placed instead. For instance,
instead of specifying an arbitrary distance between the
hands' positions in the description for [BOX]LSF, we may
refer to an external reference called size. This way,
whenever the description is used to perform the sign in
discourse (i.e. in context), it can be tagged with a size
attribute, so that the distances are altered accordingly,
with no extra rule about how to sign "big box" or
"small box".

This brings us to extend the dependency graph to
external nodes, in the sense that some of the values
within the description will depend on values that are
"outside" the lexeme itself. In fact, they are to be found
in (or given by) the context/syntactic level.

More generally speaking, this comes down to
including semantic information in the lexical units being
described. Indeed, it is a reasonable hypothesis that the
list of external dependencies relates the cognitive type of

the sign's concept. E.g. [BUILDING]LSF will at least
have the following external dependencies : height and
width and situation in signing space. The results we
have started to collect from our study of the French
conventional lexicon go to show that a lot of signs
denoting concrete objects have the same physical
dependencies, namely size and location.

5. Full Example

Here is a full example of a description for

[BUILDING]LSF, drawn in fig. 3 further up. Figure 4
illustrates the various objects built within. External
dependencies labels are between curly brackets; the
outfix |x| operation stands for the length of the
argument vector x; infix /\ is the vector product
operator.

1. SIGN S

2. LINE L
3. L // Up
4. L THRU {Loc}

5. POINT M
6. VECTOR V
7. V = Vect({Loc}, M)
8. V _|_ L
9. |V| = {Size}

10. S.shand.config = "BSL C"
11. S.shand.ori.palm = -V
12. S.shand.ori.fingext = Up /\ V
13. S.shand.traj.start = M
14. S.shand.traj.mvt = {Height}*Up

15. S.whand SYM S.shand WRT L

16. REGISTER S "building"

Figure 4: Objects involved in description of
[BUILDING]LSF below

9

Line 15 indicates that the weak hand must be

symmetric to the strong hand with respect to line L. We
give it here as an example of the type of C-statement the
model might end up with. It actually means that:

- configurations are identical;
- locations verify the given symmetry;
- palm fingext vectors are identical;
- palm normal vectors verify the symmetry.

Hence, line 15 really is a short for:

15a. S.whand.config =
 S.shand.config
15b. S.whand.loc SYM
 S.shand.loc WRT L
15c. S.whand.ori.fingext =
 S.shand.ori.fingext
15d. S.whand.ori.palm = V

However, we are not yet able to tell whether hand

symmetries all behave this way, whatever the sign being
described. The only genuine symmetry related in this
statement is the one that applies to the hand locations
(see line 15b). It may indeed turn out, say, that both
hands of a two-hand sign where locations are symmetric
along a line have the same normal vector. Please note
that the description language is still under development.

6. Conclusion

What we have outlined here is a new way of

addressing the description of sign language lexicon units.
Instead of merely giving independent values to a given
set of parameters, it is based on sequences of constraint
statements, which unlike previous models make use of
internal dependencies between the elements of the
descriptions. Consequently, all the units described do
not necessarily mention the same information, but rather
each description only states what is needed.

To assess this geometrical and sequential approach,
we are planning on describing signs on a larger scale.
We believe that the flexibility of the suggested language
itself will make it easy to cope with many types of
constraints, if more are needed. A practical concern in
the design of this model is also to limit the number of
possible descriptions for a given aspect of a sign, as the
fewer there is, the more sign descriptions will look alike,
and the more useful the model becomes as to categorize
the signs with respect to their descriptions' (or their
dependency graphs') layout.

7. References

Braffort, A. (1996). Reconnaissance et compréhension

de gestes – Application à la langue des signes. Thèse
de doctorat. Université d’Orsay.

Cuxac, C. (2000). La Langue des Signes Française – Les

voies de l’iconicité. Faits de Langue n°15-16.
Ophrys.

Filhol, M. (2006). Une approche géométrique pour une

modélisation des lexiques en langues signées. In
proceedings of TALN-Recital 2006, to appear.

Hanke, T. (1989). HamNoSys – An introductory guide.

Signum Press, Hamburg.

Hanke T. et al (2002). ViSiCAST deliverable D5-1:

interface definitions. ViSiCAST project report.
http://www.visicast.co.uk

Hanke, T. (2004). Towards Sign Language resources –

Extending an HPSG lexicon for German Sign
Language from empirical data. TISLR 8, Barcelona.

Moody, B. (1986). La Langue des Signes – Dictionnaire

bilingue élémentaire. IVT, Paris.

10

