
A SIGN MATCHING TECHNIQUE TO SUPPORT SEARCHES IN SIGN
LANGUAGE TEXTS

Ant ônio Carlos da Rocha Costa, Graçaliz Pereira Dimuro,
Juliano Baldez de Freitas

ESIN/UCPel – Escola de Inforḿatica
Universidade Católica de Pelotas

{rocha,liz,jubafreitas}@atlas.ucpel.tche.br

Abstract
This paper presents a technique for matching two signs written in theSignWriting system. We have defined such technique to support
procedures for searching in sign language texts that were written in that writing system. Given the graphical nature ofSignWriting , a
graphical pattern matching method is needed, which can deal in controlled ways with the small graphical variations writers can introduce
in the graphical forms of the signs, when they write them. The technique we present builds on a so-called degree of graphical similarity
between signs, allowing for a sort of “fuzzy” graphical pattern matching procedure for written signs.

1. Introduction

For the most part, software for processing sign lan-
guage texts and databases have started to be developed only
recently, simultaneously with the spreading of interest in
SWML(Costa, 2003) among software developers concerned
with theSignWriting (Sutton, a; Sutton, c) system. Ob-
viously, an important and critical operation needed for such
sign language processors is that of searching signs in sign
language texts.

This paper presents a technique for matching two signs
written in theSignWriting system. We have defined
such technique to support procedures for searching sign
language texts that were written in that writing system.
Given the graphical nature ofSignWriting , a graphi-
cal pattern matching method is needed, which can deal in
controlled ways with the small graphical variations writ-
ers can introduce in the graphical forms of signs when they
write them. The technique we present builds on a so-called
degree of graphical similarity between signs, allowing for
a sort of “fuzzy” graphical pattern matching procedure for
written signs.

The paper is organized as follows. In section 2., we
review aspects of sign languages related to the problem
of having them written in some notation, and summarize
the main features of theSignWriting system. Sec-
tion 3. summarizes the work done onSWMLand its im-
portance for the development of software for processing
SignWriting texts and databases. Section 4. presents
the main contribution of the paper, namely, the sign match-
ing technique designed to support procedures for search-
ing in sign language texts. Section 5. brings the Conclu-
sion. The sample signs presented in the paper are from the
Brazilian sign language LIBRAS (Linguagem Brasileira de
Sinais).

2. Sign languages and theSignWriting
system

Along history, no writing system has been widely es-
tablished for sign languages, so that such languages have
always been used only for face-to-face communication.

Since Stokoe, in the 1960’s, first recognized that sign
languages are full natural languages, in the same sense that
oral languages are, some notation systems for sign lan-
guages have been proposed. Stokoe himself introduced
one such notation system (W. C. Stokoe and Croneberg,
1976). HamNosys (Hanke, ) was another proposal. Both
were conceived as technical tools for registering linguistic
features of sign languages (handshapes, movements, artic-
ulation points, etc.).

SignWriting is also a proposed system for writing
sign languages (Sutton, a). Contrary to the other systems,
however, which were proposed mainly as tools for technical
linguistic work,SignWriting was proposed as tool for
daily use, by common (Deaf) people (Sutton, b).

3. SignWriting and SWML

Both the Stokoe system and HamNoSys are based on a
linear representation of signs, using special characters for
such purpose.SignWriting is based on graphical, bi-
dimensional representations, using graphical symbols.

This way, the former systems can easily be encoded
in computers in a linear way, by simply assigning nu-
meric codes to each special character, and the technique for
searching signs in texts written with such systems should
be straight forward to develop.

SignWriting , on the other hand, requires that, be-
sides the numeric encoding of each symbol, the computer
representation of a sign keeps the information concerning
the relative position of each symbol in the bi-dimensional
area occupied by the representation of the sign (this com-
plicates the searching procedure, as is shown below).

The SignWriter program (Sutton et al., 1995), the
first computer editor for sign languages, defined such an
encoding forSignWriting . That encoding was a binary
encoding, created specifically for the needs of that program.

SWML(Costa, 2003) is a proposal for a general encod-
ing format forSignWriting documents, usingXML(?).
It builds on the encoding used by theSignWriter pro-
gram, presenting it in a fashion the makes such encoding
available for use in all kinds of computer applications of
SignWriting (document storage and retrieval, on-line

 32



dictionaries, computer interpretation and generation of sign
languages, etc.). TheSW-Edit program (Torchelsen et al.,
2002) fully relies onSWMLto storeSignWriting -based
sign language texts.SignWriting andSWMLwere pro-
posed (Costa and Dimuro, 2002; Costa and Dimuro, 2003)
as foundations for Sign Language Processing, the transpo-
sition of the methods and techniques of Natural Language
Processing and Computational Linguistics, that have long
been developed for oral language texts, to sign language
texts.

The rest of this paper tackles one of the simplest op-
eration one can do on a sign language document, namely,
searching for a specific sign.

4. Matching Written Signs
There is a particular problem that has to be solved to

allow sound searching procedures for sign languages files
written in SignWriting, namely, to define a way of dealing
with the small graphical variations that writers can introuce
in the forms of the signs, when they write them.

The SignWriting system distinguishes explicitly
some graphical properties of the symbols of a sign, like ro-
tation and flop, for example, but does not distinguish tiny
variations due to vertical and/or horizontal displacements
of symbols within the sign, because such values are allowed
to vary along the whole range of available positions within
a sign box (as opposed to, e.g., rotation, which can only
assume a small set of possible discrete values). The conse-
quence of having such a “continuous” set of possible posi-
tions of symbols within a signbox is that one lacks a clear
geometric definition for the similarity between two signs, if
they differ only with respect to the positions of their corre-
sponding symbols.

The solution we have found to that problem is to allow
the user to control the criteria to be used for judging on the
degree of similarity of two signs by giving him a means to
define a “fuzzy” correspondence between the component
symbols of the two signs. The resulting matching proce-
dure guarantees that two corresponding symbols have the
same symbol type, rotation and flop, but allows them to
have the (user specified) degree of variation on their relative
positions within the respective signs instances. This kind of
similarity between two signs is formalized in this section as
a parameterized, reflexive and symmetric relation, that we
call sign similarity relation.

4.1. Basic Geometric Features of Symbols and Signs

Initially, we formalize the basic geometric information
concerningSignWriting symbols and signs.

Definition 1 A symbol s is defined as a tuples =
(c, n, f, v), where the values ofc, n, f andv vary according
to the symbol set being used, and:

(i) c is the category number (not available in symbol sets
previous to the SSS-2002 symbol set (Sutton, c); use
c = 0 in such cases),

(ii) n is the shape number (within the symbol’s category),

(iii) v is the symbol variation (a complimentary informa-
tion distinguishing symbols by features like, e.g., if the

Figure 1: The group G0/0 of symbols calledindex, and
some of its rotated and flopped elements.

index finger is curved or not, in the symbol for the in-
dex handshape),

(iv) f is the filling information (encoding, e.g., palm ori-
entation, in a symbol for a hand).

A set of symbols having the same symbol category and
shape(c, n) and differing only in their filling or variation
information, is called asymbol group, denoted by Gc/n. For
each symbol group Gc/n there is a so-calledbasic symbol,
denoted bysc/n, for whichf = 0 andv = 0, so thatsc/n =
(c, n, 0, 0).

Definition 2 An oriented symbolS is defined as a tuple
S = (s, r, fp), where:

(i) s is a symbol of any symbol group Gc/n,

(ii) r indicates the (counter clockwise) rotation operation
applied tos, relative to the basic symbolsc/n of the
symbol group Gc/n (the rotation is given in intervals of
45 degrees, for all symbols sets available up to now),
and

(iii) fp, called flop, is a Boolean value indicating if the
symbols is vertically mirrored or not, relative to the
basic symbolsc/n of the symbol group Gc/n.

Example 1 The symbol group calledindex, denoted by
G0/0, whose symbols, with categoryc = 0 and shape
n = 0, represent hands with index finger straight up and
closed fist, is shown in Figure 1. Each symbols in the group
G0/0 is a tuples = (0, 0, 0, f), with variationv = 0 and
fill f = 0, 1, ..., 5 (from left to right in the figure). The
oriented symbols in the first row have the basic orienta-
tion (no rotations, no flop) and are given by tuples of the
form S = (s, 0, 0). Each different fill information is rep-
resented by a different color fill in the symbol, indicating a
different palm orientation, starting with the palm oriented
towards the signer’s face. In the second row, a rotation of
45 degrees was applied to each symbol, and the oriented
symbols in that line are thus given byS = (s, 1, 0). In the
third and fourth rows, representing the left hand, there are
flopped symbols, given byS = (s, 0, 1) (with no rotations)
andS = (s, 7, 1) (with rotations of 315 degrees).

Definition 3 (i) A symbol box is the least box that
contains a symbol, defined as the 4-uplesb =

 33



(x, y, wsb, hsb), wherex and y are, respectively, the
horizontal and vertical coordinates of the upper left
corner of the symbol box (relative to the upper left cor-
ner of the sign box containing the symbol box — see
item(iv)), wsb is its width andhsb is its height;

(ii) A symbol instance, that is, an occurrence of an ori-
ented symbol within a sign, is defined as a pairSi =
(S; sb), whereS = (s, r, fl) is an oriented symbol and
sb is its symbol box;

(iii) A sign, denoted bySg, is a finite set of symbol in-
stances;

(iv) A sign boxis a box that contains a sign, defined as a
pair Sgb = (wSgb, hSgb), wherewSgb is the box width
andhSgb is the box height;

(v) A sign instanceis defined as a tupleSgi = (Sg;Sgb; p),
representing a signSg together with a sign boxSgb
that contains it, and an indexp indicating the posi-
tion of the sign instance within the sign sequence (sign
phrase) to which it belongs .

All the definitions presented above are reflected in the
SWMLformat. Note, in particular, that as defined above,
sign boxes (and consequently, sign instances) have no co-
ordinate information. This is so because sign language texts
should be conceived essentially as strings of signs, with no
particular formatting information included in them.

SWML, however, defines the notions ofdocument, page,
line andcell, so that sign instances can be put into cells,
sequences of cells organized into lines, sequences of lines
into pages, and sequences of pages into documents, in order
to support document rendering procedures (e.g., horizontal
or vertical renderings). Note also that symbols don’t have
predefined sizes (width and height). Sizes are defined only
for symbol instances, through their symbol boxes. This al-
lows for scalable symbol sets (e.g., in theSVGformat (?)).

Example 2 TheSWMLrepresentation of the LIBRAS sign
for IDEA (written as in Figure 2) is:

<signbox>
<symb x="46" y="37" x-flop="0" y-flop="0"

color="0,0,0">
<category>04</category>
<group>02</group>
<symbnum>001</symbnum>
<variation>01</variation>
<fill>01</fill>
<rotation>04</rotation>

</symb>
<symb x="81" y="48" x-flop="0" y-flop="0"

color="0,0,0">
<category>01</category>
<group>01</group>
<symbnum>001</symbnum>
<variation>01</variation>
<fill>02</fill>
<rotation>02</rotation>

</symb>
<symb x="62" y="18" x-flop="0" y-flop="0"

color="0,0,0">

Figure 2: A way to write the LIBRAS sign for IDEA.

<category>02</category>
<group>01</group>
<symbnum>001</symbnum>
<variation>01</variation>
<fill>01</fill>
<rotation>01</rotation>

</symb>
<symb x="99" y="31" x-flop="0" y-flop="1"

color="0,0,0">
<category>02</category>
<group>05</group>
<symbnum>001</symbnum>
<variation>01</variation>
<fill>01</fill>
<rotation>02</rotation>

</symb>
</signbox>

4.2. The Sign Similarity Relation

The sign similarity relationis a parameterized, reflex-
ive, symmetric and non transitive relation, introduced here
to formalize the approximate similarity between two sign
instances, and to provide for the construction of matching
procedures for signs and sign language expressions.

The sign similarity relation has to embody an admissi-
ble difference in the positions of corresponding symbol in-
stances within the two sign instances that it relates, taking
into account a measure of significance for this difference, as
determined by the user. The admissible differences in the
positions of corresponding symbol instances are expressed
in terms of percentages of some reference sizes, by a so-
calledminimum degree of correspondence, denoted byε.

The reference sizes may be given either explicitly (e.g.,
10 pixels) or implicitly (e.g., as the height and width of
some symbol instance, chosen for that purpose among the
symbols of the symbol set).

More over, the admissible difference in the correspond-
ing positions of the corresponding symbols may be calcu-
lated in two ways:

• with respect to theirabsolutepositions within the sign
boxes to which they belong

• with respect to their positionsrelative to some refer-
ence symbol, known to be instantiated in each of the
signs being compared

The absoluteway of calculating the admissible differ-
ences is simpler, but therelativeway allows the establish-
ment of the similarity between a sign and another deriving

 34



Figure 3: Similarity based on absolute and relative posi-
tions of the symbols (LIBRAS sign for YEAR).

from it just by a joint displacement of the symbols within
the signbox: e.g., in figure 3, the first sign instance would
usually be judged similar only to the second instance, ac-
cording to an absolute position based similarity relation,
while it could also be judged similar to the third instance,
according to the relative position based similarity relation.

We now define the sign similarity relation based on the
absolute positions of the symbols.

Definition 4 Let Si1 = (S1; sb1) and Si2 = (S2; sb2) be
two symbol instances belonging to two different signs. Let
their symbol boxes be given bysb1 = (x1, y1, wsb1, hsb1)
andsb2 = (x2, y2, wsb2, hsb2), respectively. Then,Si1 and
Si2 are said tocorrespond to each other with at least degree
ε, and reference sizesh0 and w0 (for height and width),
denoted bySi1 ≈ε

h0,w0
Si2, if and only if the following con-

ditions hold:

(i) Equality between the basic symbols:
S1 = S2 (which implieswsb1 = wsb2 and hsb1 =
hsb2),

(ii) Admissible horizontal difference:
|x1−x2

w0
| ≤ k

(iii) Admissible vertical difference:
|y1−y2

h0
| ≤ k

wherek = 100−ε
100 ≥ 0.

Definition 5 Let Sgi1 = (Sg1;Sgb1; j1) and Sgi2 =
(Sg2;Sgb2; j2) be two sign instances.Sgi1 and Sgi2 are
said to besimilar with at least degreeε, relative to the ab-
solute positions of their symbols, and reference sizesh0 and
w0, if and only each symbol in a sign has one and only one
corresponding symbol in the other sign, that is, there exists
a bijectionf : Sg1 → Sg2, such that for eachSi ∈ Sg1,
Si≈ε

h0,w0
f(Si).

Example 3 Consider the three instances of the LIBRAS
sign IDEA which are in Figure 4. Observe that each
such sign instance contains an instance of the symbolin-
dex which differs in its coordinates from the correspond-
ing index symbol instance of the other sign instances
(all other symbol instances match exactly their correspon-
dents). Consider a situation where a user is searching for
that signIDEA in a text. Suppose he writes the first sign
instance as the sign to be searched and that only the two
other instances are present in the text. The later two in-
stances have some degree of similarity with the first sign

Figure 4: Three (possible) instances of the LIBRAS sign
IDEA.

instance. In spite of this fact, they are graphically differ-
ent from the first instance, in a strict sense. They may all
be considered to represent the same sign, or not, depend-
ing on the minimum degree of similarity required by the
user for the results of the matching procedure. If the user
specifies an intermediate degree of similarity, the second in-
stance would match the first, while the third instance would
not (the hand is too low in comparison with its position in
the first sign instance). If the user specifies a low degree of
similarity, all instances would match. If the user required
100% of similarity, no instance would match. The total de-
gree of similarity (ε = 100%) requires that no difference be
admitted between the two sign instances being compared.

The basic similarity relation defined above does not
take into account some important (and frequent) excep-
tions. Such exceptions are mainly related to symbols like
the arrow symbol (encountered, e.g., in the LIBRAS sign
IDEA), whose position within the sign is, in general, not
critical (see Figure 5). Such symbols have most of their
meaning completely encoded in their shapes and transfor-
mations, and the place where they are put in the sign boxes
is essentially irrelevant. For instance, thearrow symbol in
the sign for IDEA means that the right hand moves in the
horizontal plane, in the indicated direction, and this infor-
mation is the same, wherever thearrow is placed in the
sign box. In such cases, the relative position of the symbol
within the sign box is not important. In the examples of
the Figure 5, even if a rigorous or a total degree of similar-
ity is required, the matching process should find that those
three sign instances are similar. On the other hand, for sym-
bols like theasterisk, almost no variation of the its position
should be allowed, since it indicates a position where two
components of the sign (e.g., head, hands, etc.) touch each
other when the sign is performed, and even small degrees
of variations may imply linguistically relevant differences
between the signs.

Other reasonable definitions for the sign similarity re-
lation could be given such as, for instance, the one already
mentioned, of taking the positions of the symbols relatively
to a reference symbol, known to occur on both the sign
instances that are being compared. Even coarser relations
could be defined, and possibly considered useful, e.g., one
defining the admissible differences on the basis of the ab-
solute coordinates of the very symbols being compared.

4.3. Search Procedures for Sign Texts

SWML, as currently defined, already has all information

 35



Figure 5: Three (guaranteed) instances of the LIBRAS sign
IDEA.

needed to allow for asign matching procedurebased on
the sign similarity relation defined here. The special treat-
ment of symbols whose meanings are not sensitive to the
symbols’ placements in the signs is to be embedded in the
matching process, requiring fromSWMLonly that it identi-
fies symbol instances completely, which it perfectly does.
On the basis of such sign matching procedure, a procedure
to search for signs in sign language texts can be easily de-
fined, in a straightforward way.

5. Conclusion
In this paper, we have shown that searching for signs in

sign language texts written inSignWriting is a straight
forward matter. The only slightly tricky part of the search-
ing procedure is in the operation of matching two signs,
which should allow for small differences in the positions
of their corresponding symbol instances. Ideally, the size
of the differences that are to be admitted in such corre-
spondence tests should be specifiable by the user when he
calls the search procedure, so that he can have full control
over the desired degree of similarity of the signs being com-
pared.

Acknowledgements
This work was partially supported by CNPq and

FAPERGS.

6. References
A. C. R. Costa and G. P. Dimuro. 2002.SignWriting -

based sign language processing. In I. Wachsmuth and
T. Sowa, editors,Gesture and Sign Language in Human-
Computer Interaction, pages 202–05, Berlin. Springer-
Verlag.

A. C. R. Costa and G. P. Dimuro. 2003.SignWriting
and SWML: Paving the way to sign language process-
ing. In O. Streiter, editor,Traitement Automatique des
Langues de Signes, Workshop on Minority Languages,
Batz-sur-Mer, June 11-14, 2003.

A. C. R. Costa. 2003. TheSWMLsite. Located at:.
http://swml.ucpel.tche.br .

T. Hanke. Hamnosys - the hamburg notation system. Lo-
cated at:.

V. Sutton. Lessons in signwriting – textbook and work-
book. Available on-line at:. (Sutton, c).

V. Sutton. The signwriting history. Available on-line at:.
(Sutton, c).

V. Sutton. The SignWriting site. Located at:.
http://www.signwriting.org .

V. Sutton, , and R. Gleaves. 1995.SignWriter – The
world’s first sign language processor. Center for Sutton
Movement Writing, La Jolla.

R. P. Torchelsen, A. C. R. Costa, and G. P. Dimuro. 2002.
Editor para textos escritos em signwriting. In5th. Sim-
posium on Human Factors in Computer Systems, IHC
2003, pages 363–66, Fortaleza. SBC.

D. C. Casterline W. C. Stokoe and C. G. Croneberg. 1976.
A Dictionary of American Sign Language on Linguistic
Principles. Linstok Press, Silver Spring.

 36


