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Abstract 
The translation of English text into American Sign Language (ASL) animation tests the limits of traditional machine translation (MT) 
approaches.  The generation of spatially complex ASL phenomena called “classifier predicates” motivates a new representation for 
ASL based on virtual reality modeling software, and previous linguistic research provides constraints on the design of an English-to-
Classifier-Predicate translation process operating on this representation.  This translation design can be incorporated into a multi-
pathway architecture to build English-to-ASL MT systems capable of producing classifier predicates. 
 

Introduction and Motivations 
Although Deaf students in the U.S. and Canada 

are taught written English, the challenge of acquiring a 
spoken language for students with hearing impairments 
results in the majority of Deaf U.S. high school graduates 
reading at a fourth-grade1 level (Holt, 1991).  
Unfortunately, many strategies for making elements of the 
hearing world accessible to the Deaf (e.g. television 
closed captioning or teletype telephone services) assume 
that the user has strong English literacy skills.  Since 
many Deaf people who have difficulty reading English 
possess stronger fluency in American Sign Language 
(ASL), an automated English-to-ASL machine translation 
(MT) system can make more information and services 
accessible in situations where English captioning text is at 
too high a reading level or a live interpreter is unavailable. 

Previous English-to-ASL MT systems have used 
3D graphics software to animate a virtual human character 
to perform ASL output.  Generally, a script written in a 
basic animation instruction set controls the character’s 
movement; so, MT systems must translate English text 
into a script directing the character to perform ASL.  
Previous projects have either used word-to-sign 
dictionaries to produce English-like manual signing 
output, or they have incorporated analysis grammar and 
transfer rules to produce ASL output (Huenerfauth, 2003; 
Sáfár and Marshall, 2001; Speers, 2001; Zhao et al., 
2000).  While most of this ASL MT work is still 
preliminary, there is promise that an MT system will one 
day be able to translate many kinds of English-to-ASL 
sentences; although, some particular ASL phenomena – 
those involving complex use of the signing space – have 
proven difficult for traditional MT approaches.  This paper 
will present a design for generating these expressions. 

ASL Spatial Phenomena 
ASL signers use the space around them for 

several grammatical, discourse, and descriptive purposes.  
During a conversation, an entity under discussion 
(whether concrete or abstract) can be “positioned” at a 
point in the signing space.  Subsequent pronominal 

                                                   
1 Students who are age eighteen and older are reading 

English text at a level more typical of a ten-year-old student.   

reference to this entity can be made by pointing to this 
location (Neidle et al., 2000).  Some verb signs will move 
toward or away from these points to indicate (or show 
agreement with) their arguments (Liddell, 2003a; Neidle 
et al., 2000).  Generally, the locations chosen for this use 
of the signing space are not topologically meaningful; that 
is, one imaginary entity being positioned to the left of 
another in the signing space doesn’t necessarily indicate 
the entity is to the left of the other in the real world. 

Other ASL expressions are more complex in their 
use of space and position invisible objects around the 
signer to topologically indicate the arrangement of entities 
in a 3D scene being discussed.  Constructions called 
“classifier predicates” allow signers to use their hands to 
position, move, trace, or re-orient an imaginary object in 
the space in front of them to indicate the location, 
movement, shape, contour, physical dimension, or some 
other property of a corresponding real world entity under 
discussion.  Classifier predicates consist of a semantically 
meaningful handshape and a 3D hand movement path.  A 
handshape is chosen from a closed set based on 
characteristics of the entity described (whether it is a 
vehicle, human, animal, etc.) and what aspect of the entity 
the signer is describing (surface, position, motion, etc).    

For example, the sentence “the car drove down 
the bumpy road past the cat” could be expressed in ASL 
using two classifier predicates.  First, a signer would move 
a hand in a “bent V” handshape (index and middle fingers 
extended and bent slightly) forward and slightly 
downward to a point in space in front of his or her torso 
where an imaginary miniature cat could be envisioned.  
Next, a hand in a “3” handshape (thumb, index, middle 
fingers extended with the thumb pointing upwards) could 
trace a path in space past the “cat” in an up-and-down 
fashion as if it were a car bouncing along a bumpy road.  
Generally, “bent V” handshapes are used for animals, and 
“3” handshapes, for vehicles. 

Generating Classifier Predicates 
As the “bumpy road” example suggests, 

translation involving classifier predicates is more complex 
than most English-to-ASL MT because of the highly 
productive and spatially representational nature of these 
signs. Previous ASL MT systems have dealt with this 
problem by omitting these expressions from their 
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linguistic coverage; however, many English concepts lack 
a fluent ASL translation without them.  Further, these 
predicates are common in ASL; in many genres, signers 
produce a classifier predicate on average once per 100 
signs (this is approximately once per minute at typical 
signing rates) (Morford and MacFarlane, 2003).  So, 
systems that cannot produce classifier predicates can only 
produce ASL of limited fluency and are not a viable long-
term solution to the English-to-ASL MT problem. 

Classifier predicates challenge traditional 
definitions of what constitutes linguistic expression, and 
they oftentimes incorporate spatial metaphor and scene-
visualization to such a degree that there is debate as to 
whether they are paralinguistic spatial gestures, non-
spatial polymorphemic constructions, or compositional yet 
spatially-parameterized expressions (Liddell, 2003b).  No 
matter their true nature, an ASL MT system must 
somehow generate classifier predicates.  While MT 
designs are not required to follow linguistic models of 
human language production in order to be successful, it is 
worthwhile to consider linguistic models that account well 
for the ASL classifier predicate data but minimize the 
computational or representational overhead required to 
implement them.   

Design Focus and Assumptions 
This paper will focus on the generation of 

classifier predicates of movement and location (Supalla, 
1982; Liddell, 2003a).  Most of the discussion will be 
about generating individual classifier predicates; an 
approach for generating multiple interrelated predicates 
will be proposed toward the end of the paper.   

This paper will assume that English input 
sentences that should be translated into ASL classifier 
predicates can be identified.  Some of the MT designs 
proposed below will be specialized for the task of 
generating these phenomena.  Since a complete MT 
system for English-to-ASL would need to generate more 
than just classifier predicates, the designs discussed below 
would need to be embedded within an MT system that had 
other processing pathways for handling non-spatial 
English input sentences.  The design of such multi-
pathway MT architectures is another focus of this research 
project (Huenerfauth, 2004). 

These other pathways could handle most inputs 
by employing traditional MT technologies (like the ASL 
MT systems mentioned above).  A sentence could be 
“identified” (or intercepted) for special processing in the 
classifier predicate pathway if it fell within the pathway’s 
implemented lexical (and – for some designs – spatial) 
resources.2  In this way, a classifier predicate generation 
component could actually be built on top of an existing 
ASL MT system that didn't currently support classifier 
predicate expressions.   

We will first consider a classifier predicate MT 
approach requiring little linguistic processing or novel 
ASL representations, namely a fully lexicalized approach. 

                                                   
2 A later section of this paper describes how the decision 

of whether an input English sentence can be processed by the 
special classifier predicate translation pathway depends on 
whether a motif (introduced in that section) has been 
implemented for the semantic domain of that sentence. 

As engineering limitations are identified or additional 
linguistic analyses are considered, the design will be 
modified, and progressively more sophisticated 
representations and processing architectures will emerge.   

Design 1: Lexicalize the Movement Paths 
The task of selecting the appropriate handshape 

for a classifier predicate, while non-trivial, seems 
approachable with a lexicalized design.  For example, by 
storing semantic features (e.g. +human, +vehicle, 
+animal, +flat-surface) in the English lexicon, possible 
handshapes can be identified for entities referred to by 
particular English nouns.  Associating other features (e.g. 
+motion-path, +stationary-location, +relative-locations, 
+shape-contour) with particular verbs or prepositions in 
the English lexicon could help identify what kind of 
information the predicate must express – further 
narrowing the set of possible classifier handshapes.  To 
produce the 3D movement portion of the predicate using 
this lexicalized approach, we could store a set of 3D 
coordinates in the English lexicon for each word or phrase 
(piece of lexicalized syntactic structure) that may be 
translated as a classifier predicate.   

Problems with This Design 
Unfortunately, the highly productive and scene-

specific nature of these signs makes them potentially 
infinite in number.  For example, while it may seem 
possible to simply store a 3D path with the English phrase 
"driving up a hill," factors like the curve of the road, 
steepness of hill, how far up to drive, etc. would affect the 
final output.  So, a naïve lexicalized 3D-semantics 
treatment of classifier movement would not be scalable.   

Design 2: Compose the Movement Paths 
Since the system may need to produce 

innumerable possible classifier predicates, we can't merely 
treat the movement path as an unanalyzable whole.  A 
more practical design would compose a 3D path based on 
some finite set of features or semantic elements from the 
English source text.  This approach would need a library 
of basic animation components that could be combined to 
produce a single classifier predicate movement.  Such an 
“animation lexicon” would contain common positions in 
space, relative orientations of objects in space (for 
concepts like above, below, across from), common motion 
paths, or common contours for such paths.  Finally, these 
components would be associated with corresponding 
features or semantic elements of English so that the 
appropriate animation components can be selected and 
combined at translation time to produce a 3D path.   

Problems with This Design 
This design is analogous to the polymorphemic 

model of classifier predicate generation (Supalla 1978, 
1982, 1986).  This model describes ASL classifier 
predicates as categorical, and it characterizes their 
generation as a process of combining sets of spatially 
semantic morphemes.  The difficulty is that every piece of 
spatial information we might express with a classifier 
predicate must be encoded as a morpheme.  These 
phenomena can convey such a wide variety of spatial 
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information – especially when used in combination to 
describe spatial relationships or comparisons between 
objects in a scene – that many morphemes are required.  

Liddell’s analysis (2003b) of the polymorphemic 
model indicates that in order to generate the variety of 
classifier predicates seen in ASL data, the model would 
need a tremendously large (and possibly infinite) number 
of morphemes.  Using a polymorphemic analysis, Liddell 
(2003b) decomposes a classifier predicate of one person 
walking up to another, and he finds over 28 morphemes, 
including some for: two entities facing each other, being 
on the same horizontal plane, being vertically oriented, 
being freely moving, being a particular distance apart, 
moving on a straight path, etc.   

Liddell considers classifier predicates as being 
continuous and somewhat gestural in nature (2003a), and 
this partially explains his rejection of the model.  (If there 
are not a finite number of possible sizes, locations, and 
relative orientations for objects in the scene, then the 
number of morphemes needed becomes infinite.)  
Whether classifier predicates are continuous or categorical 
and whether this number of morphemes is infinite or 
finite, the number would likely be intractably large for an 
MT system to process.  We will see that the final classifier 
predicate generation design proposed in this paper will use 
a non-categorical approach for selecting its 3D hand 
locations and movements.  This should not be taken as a 
linguistic claim about human ASL signers (who may 
indeed use the large numbers of morphemes required by 
the polymorphemic model) but rather as a tractable 
engineering solution to the highly productive nature of 
classifier predicates. 

Another reason why a polymorphemic approach 
to classifier predicate generation would be difficult to 
implement in a computational system is that the complex 
spatial interactions and constraints of a 3D scene would be 
difficult to encode in a set of compositional rules.  For 
example, consider the two classifier predicates in the “the 
car drove down the bumpy road past the cat” example.  To 
produce these predicates, the signer must know how the 
scene is arranged including the locations of the cat, the 
road, and the car.  A path for the car must be chosen with 
beginning/ending positions, and the hand must be 
articulated to indicate the contour of the path (e.g. bumpy, 
hilly, twisty).  The proximity of the road to the cat, the 
plane of the ground, and the curve of the road must be 
selected.  Other properties of the objects must be known: 
(1) cats generally sit on the ground and (2) cars generally 
travel along the ground on roads.  The successful 
translation of the English sentence into these two classifier 
predicates involved a great deal of semantic 
understanding, spatial knowledge, and reasoning. 

A 3D Spatial Representation for ASL MT 
ASL signers using classifier predicates handle 

these complexities using their own spatial knowledge and 
reasoning and by visualizing the elements of the scene.  
An MT system may also benefit from a 3D representation 
of the scene from which it could calculate the movement 
paths of classifier predicates.  While design 2 needed 
compositional rules (and associated morphemes) to cover 
every possible combination of object positions and spatial 
implications as suggested by English texts, the third and 

final MT design (discussed in a later section) will use 
virtual reality 3D scene modeling software to simulate the 
movement and location of entities described by an English 
text (and to automatically manage their interactions). 

The AnimNL System 
A system for producing a changing 3D virtual 

reality representation of a scene from an English text has 
already been implemented: the Natural Language 
Instructions for Dynamically Altering Agent Behaviors 
system (Schuler, 2003; Bindiganavale et al., 2000; Badler 
et al., 2000) (herein, “AnimNL”).  The system displays a 
3D animation and accepts English input text containing 
instructions for the characters and objects in the scene to 
follow.  It updates the virtual reality so that objects obey 
the English commands.  AnimNL has been used in 
military training and equipment repair domains and can be 
extended by augmenting its library of Parameterized 
Action Representations (PARs), to cover additional 
domains of English input texts.   

The system's ability to interact with language and 
plan future actions arises from the use of PARs, which can 
be thought of as animation/linguistic primitives for 
structuring the movements in a 3D scene.  PARs are 
feature-value structures that have slots specifying: what 
agent is moving, the path/manner of this motion, whether 
it is translational/rotational motion, the terminating 
conditions on the motion, any speed or timing data, etc.  A 
single locomotion event may contain several sub-
movements or sub-events, and for this reason, PARs may 
be defined in a hierarchical manner.  A single “high-level” 
PAR may specify the details for the entire motion, but it 
may be defined in terms of several “low-level” PARs 
which specify the more primitive sub-movements/events. 

The system stores a database of PAR templates 
that represent prototypical actions the agent can perform. 
These templates are missing particular details (some of 
their slots aren’t filled in) about the position of the agent 
or other entities in the environment that would affect how 
the animation action should really be performed in 
particular situations.  By parameterizing PARs on the 3D 
coordinates of the objects participating in the movement, 
the system can produce animations specific to particular 
scene configurations and reuse common animation code.   

English lexicalized syntactic structures are 
associated with PARs so that the analysis of a text is used 
to select a PAR template and fill some of its slots.  For 
example, there may be a PAR associated with the concept 
of "falling" vs. another for "jumping."  While these 
templates must remain parameterized on the 3D location 
of the agent of the movement until it is known at run time, 
there are some properties (in this case, the direction of 
motion) that can be specified for each from the English 
semantics.  During analysis of the English input text, 
semantic features of motion verbs are obtained from the 
VerbNet hierarchy (Kipper et al., 2004), and these features 
are also used to select and fill a particular motion 
template.  Since VerbNet groups verbs that share common 
semantic/syntactic properties, AnimNL is able to link an 
entire set of semantically similar motion verbs to a single 
PAR template.  Each of the verbs in the set may fill some 
of the slots of the motion template somewhat differently. 
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When a PAR template has been partially filled 
with information from the English text and 3D object 
locations, it is passed off to AnimNL’s animation planner.  
In fact, PARs contain slots allowing them to be 
hierarchical planning operators: pre-conditions, effects, 
subplans, etc.  The movements of all objects in the 
AnimNL system are governed by a planning process, 
which allows the objects in the scene to move realistically.  
Many spatial motions have conditions on the location, 
orientation, or motion state of an object and its 
environment before, during, and after the event.  The PAR 
operators help the system work out the details of an 
animation from the limited specification of this motion 
provided by an English text.  For example, it may 
determine starting and stopping locations for movement 
paths or select relative locations for objects in the 3D 
scene based on prepositions and adverbials in the English 
input text.  The interaction and conditions of these 
planning operators simulate physical constraints, collision 
avoidance, human anatomical limitations, and other 
factors to produce an animation. 

Using AnimNL for ASL 
The MT system’s classifier predicate generator 

can use the AnimNL software to analyze English 
sentences to be translated into classifier predicates.  
AnimNL can process this text as if it were commands for 
the entities mentioned in the text to follow.  Based on this 
analysis, the AnimNL can create and maintain a 3D 
representation of the location and motion of these entities.  
Next, a miniature virtual reality animation of the objects 
in this representation can be overlaid on a volume of the 
space in front of the torso of the animated ASL-signing 
character.  In this way, a miniature 3D virtual reality 
would be embedded within the original 3D space 
containing the standing animated virtual human.  In the 
“bumpy road” example, a small invisible object would be 
positioned in space in front of the chest of the signing 
character to represent the cat.  Next, a 3D animation path 
and location for the car (relative to the cat) would be 
chosen in front of the character’s chest. 

The AnimNL software can thus produce a 
miniature “invisible world” representing the scene 
described by the input text.  Unlike other applications of 
AnimNL – where entities described by the English text 
would need to be rendered to the screen – in this situation, 
the 3D objects would be transparent.  Therefore, the MT 
system does not care about the exact appearance of the 
objects being modeled.  Only the location, orientation, and 
motion paths of these objects in some generic 3D space 
are important since this information will be used to 
produce classifier predicates for the animated ASL-
signing character. 

An Overly Simplistic Generation Strategy 
The next section of this paper (design 3) will 

discuss how the “invisible world” representation can be 
used to generate classifier predicates.  To motivate that 
third and final design, we will first consider an overly 
simplistic (and incorrect) strategy for using the virtual 
reality to attempt classifier predicate generation.   

This simplistic “Directly Pictorial” strategy for 
building a classifier predicate is as follows:  When a new 

object is introduced into the invisible world, the signing 
character moves its hand to a location “inside of” the 
transparent object.  By also choosing an appropriate 
handshape for the character (possibly using the +animal or 
+vehicle features discussed above), then a classifier 
predicate is apparently produced that conveys the spatial 
information from the English text.  As objects in the 
invisible world are moved or reoriented as AnimNL 
analyzes more text, the signer can express this information 
using additional classifier predicates by again placing its 
hand inside the (possibly moving) 3D object.  (See Figure 
1.) 

Limitations of the “Directly Pictorial” Strategy 
Whereas design 2 mirrored the polymorphemic 

model, this design is similar to that of DeMatteo (1977), 
who sees classifier predicates as being direct “spatial 
analogues” of 3D movement paths in a scene imagined by 
the signer (Liddell, 2003b).  In this model, signers 
maintain a 3D mental image of a scene to be described, 
select appropriate handshapes to refer to entities in their 
model, and trace out topologically analogous location and 
movement paths for these entities using their hands.  

Unfortunately, the model is over-generative 
(Liddell, 2003b).  By assuming that the selection of 
handshapes and movements are orthogonal and that 
movement paths are directly representative 3 of the paths 
of entities in space, this analysis predicts many ASL 
classifier constructions that never appear in the data 
(containing imaginable but ungrammatical combinations 
of handshape, orientation, and movement) (Liddell, 
2003b).  Finally, the model cannot consider discourse and 
non-spatial semantic features that can influence classifier 
predicate production in ASL.  

Design 3: Lexicon of Classifier Predicates 
The “Directly Pictorial” strategy was just one 

way to use the 3D information in the invisible world 
representation to generate classifier predicates.  This 
section will introduce the MT approach advocated by this 
paper: design 3.  This design uses the invisible world but 
avoids the limitations of the previous strategy by 
considering additional sources of information during 
translation.  Whereas previous sections of this paper have 
used comparisons to linguistic models to critique an MT 
design, this section will use a linguistic model for 
inspiration.   

Lexicon of Classifier Predicate Templates 
Liddell (2003a, 2003b) proposed that ASL 

classifier predicates are stored as large numbers of 
abstract templates in a lexicon.  They are “abstract” in the 
sense that each is a template parameterized on 3D 
coordinates of whatever object is being described, and 
each can therefore be instantiated into many possible 

                                                   
3 To illustrate how classifier predicate movements can be 

conventional and not visually representative, Liddell (2003b) 
uses the example of an upright figure walking leisurely being 
expressed as a classifier predicate with D handshape slightly 
bouncing as it moves along a path.  While the hand bounces, 
the meaning is not that a human is bouncing but that he or she 
is walking leisurely. 
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classifier predicate outputs.  For example, there may be 
one template for classifier predicates expressing that a car 
is parked at a point in space; when this template is turned 
into an actual classifier predicate, then the 3D coordinate 
of the car would be filled in. 

Each lexical entry stores the semantic content of 
a particular classifier predicate and most of the handshape 
and movement specification for its performance.  A signer 
selects a template based on how well its spatial and non-
spatial semantics convey the desired content.  When a 
signer generates a classifier predicate from this template, 
then the locations, orientations, and specific movement 
paths of objects in a 3D mental spatial representation are 
used to fill the remaining parameters of the template and 
produce a full specification of how to perform the 
classifier predicate.   

Although the previous paragraph refers to this 
approach as “lexical,” it differs from design 1 (which 
augmented the English lexicon with 3D movement data) 
because it creates a distinct ASL lexicon of classifier 
predicates, and the movement information in these entries 
is parameterized on the data in the 3D scene.  While these 
templates may also resemble the compositional 
morphemes of the polymorphemic model (the “animation 
lexicon” of design 2) since they both link semantics to 3D 
movement, these templates have more pre-compiled 
structure.  While the morphemes required complex 
processing by compositional rules, the templates just need 
to be selected and to have their 3D parameters set. 

Liddell (2003b) explains that this model avoids 
the under-generation of (Supalla, 1978, 1982, 1986) by 
incorporating a 3D spatial representation to select 
locations and movement paths, but it also avoids the over-
generation of (DeMatteo, 1977) by restricting the possible 
combinations of handshapes and movement paths.  
Impossible combinations are explained as lexical gaps; 
ungrammatical classifier predicate feature combinations 
are simply not entries in the lexicon (Liddell, 2003b). 

Classifier Predicate Templates for MT 
To implement this linguistic model as an MT 

design, we will need: (1) a 3D scene representation, (2) a 

list of templates for producing the signing character’s arm 
movements, (3) a way to link the semantics of English 
sentences to specific templates, and (4) a method for 
turning a filled template into an animation of the signer’s 
arm.  Requirement 1 is satisfied by the invisible world 
representation produced by the AnimNL software. 

While the AnimNL software used one database 
of PAR templates to produce the 3D animation of objects 
in the invisible world, this design can fulfill requirement 2 
by adding a second database, whose PAR templates will 
describe the animated movement of the signing 
character’s arm as it performs a classifier predicate.  (This 
first set will be called “invisible world” PARs, and the 
second, “classifier predicate” PARs.)  Compared to the 
invisible world PARs, the classifier predicate PARs will 
be very simple: they will store instructions for the signing 
character’s hand to be in a particular shape and for it move 
between two or more 3D coordinates in the signing space 
– possibly along a programmed contour. 

The re-use of PAR templates suggests a method 
for linking the semantics of the English text to arm 
movement templates (requirement 3).  Just as the AnimNL 
software used features of lexical syntactic structures to 
trigger invisible world PARs, design 3 can use these 
features to link the semantics of English sentences to 
classifier predicate PARs.  These features can help select a 
template and fill some of its non-spatial information slots.  
Finally, data from the invisible world representation can 
fill the spatial parameters of the classifier predicate PAR. 

Since arm movements are represented as PARs, 
this design can use a planning process (like that of the 
AnimNL software) to transform these PARs into a 3D 
animation script (requirement 4).  While the AnimNL’s 
planning process turned invisible world PARs into 
animations of invisible objects, this planning process will 
turn classifier predicate PARs into an animation script 
controlling the movement of the signing character’s arm 
as it produces a classifier predicate.   (See Figure 2.) 

Generating Multiple Classifier Predicates 
Up until now, this paper has focused on 

generating a single classifier predicate from a single 

Figure 1: “Directly Pictorial” Generation Strategy 
(argued against in this paper).  Solid lines depict 

transformation processes between representations, and 
dotted lines, information flow into a process. 

Figure 2: The Design 3 Architecture.  
Notice the new selection/filling process for a Classifier 
Predicate PAR based on: a PAR template, the 3D scene 

data, and English text features. 
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English sentence, but in fact, the actual English-to-ASL 
translation problem is more complex.  New challenges 
arise when generating several interrelated classifier 
predicates to describe a single scene.  While specifying a 
system to generate a single predicate has been a natural 
starting point (and a first priority), it is important to 
consider how this architecture would need to be enhanced 
to handle the production of multiple classifier predicates.  
If these issues are not considered early in the development 
process, then software design decisions may be made that 
would make the MT system difficult to extend. 

While the earlier sections of this paper may have 
suggested that there is always a correspondence between a 
single English input sentence and a single ASL classifier 
predicate output, in fact, several classifier predicates may 
be needed to convey the semantics of one English 
sentence (or vice versa).  Even when the mapping is one-
to-one, the classifier predicates may need to be rearranged 
during translation to reflect the scene organization or ASL 
conventions on how these predicates are sequenced or 
combined.  For instance, when describing the arrangement 
of furniture in a room, signers generally sequence their 
description starting with items to one side of the doorway 
and then circling across the room back to the doorway 
again.  An English description of a room may be 
significantly less spatially systematic in its ordering. 

Multiple classifier predicates used to describe a 
single scene may also interact with and constrain one 
another.  The selection of scale, perspective, and 
orientation of a scene chosen for the first classifier 
predicate will affect those that follow it.  If decisions 
about the representation of the virtual reality scene are 
made without considering the requirements of the later 
classifier predicates, then output may be produced which 
arranges the elements of the scene in a non-fluent manner.  
Often the first English sentence describing a 3D scene 
may not contain enough detail to make all of the choices 
about the scene layout or perspective.  A generation 
approach that considers the spatial information in adjacent 
(later) English input sentences prior to making such 
decisions could produce higher quality ASL output. 

Another motivation for making generation 
decisions for groups of related classifier predicates is that 
the semantics of multiple classifier predicates may interact 
to produce emergent meaning.  For example, one way to 
convey that an object is between two others in a scene is 
to use three classifier predicates: two to locate the 
elements on each side and then one for the entity in the 
middle.  In isolation, these classifier predicates do not 
convey any idea of a spatial relationship, but in 
coordinated combination, this semantic effect is achieved.  

Classifier Predicate Motifs 
An MT system could handle the translation 

complexities discussed above by using sets of multi-
classifier templates called motifs.  Instead of immediately 
triggering one ASL classifier as each sentence of an 
English text is encountered, now the system will represent 
collections of multiple interrelated classifier predicate 
templates that can be used together to describe a scene.  
These collective structures would allow generation 
decisions to be made at the scene-level, thus decoupling 
individual English sentences from individual classifier 

predicates.  The motif structure could decide how many 
classifiers must be used to communicate some block of 
spatial information and how to coordinate and arrange 
them. 

A motif would serve as a set of deep generation 
rules or patterns for constructing a series of ASL classifier 
predicates in a specific semantic genre – e.g. movement of 
vehicles, giving directions, furniture arrangement, 
movements of walking people, etc.  While this paper 
focuses on movement and location predicates, motifs can 
be imagined for size and shape specifiers (e.g. stripes or 
spots on clothing), instrument classifiers (e.g. using 
handtools), and others.  Each motif would contain 
conditional rules for determining when it should be 
employed, that is, whether a particular English input text 
is within its genre.  Just like the classifier predicate PAR 
templates in design 3, motifs could be triggered by 
features of the analyzed English text.4     

Motifs would use planning rules to select and 
sequence their component predicates and to choose the 
best viewpoint, orientation, and scale for the entire scene.  
Having a separate motif for each genre would allow these 
planning rules to be specialized for how interrelated 
classifier predicates communicate spatial semantic 
information in a particular domain – possibly using genre-
specific conventions as in the “furniture arrangement” 
example.  Each motif could translate an English sentence 
according to its own guidelines; so, the system could 
translate the same input sentence differently based on the 
motif genre in which it occurred.   

Implementation Issues 
We can extend design 3 to generate multiple 

classifier predicates by adding a database of motif 
representations to be used in the PAR-planning process.  
In fact, these multi-predicate motifs could be represented 
as additional higher-level PAR templates.  In the same 
way that a classifier predicate PAR can be hierarchically 
decomposed into sub-movements of the signer’s arm 
(each represented by a lower-level PAR), analogously, a 
PAR representing a multi-predicate motif can be 
decomposed into PARs for individual classifier predicates.  
In design 3, English text features immediately triggered a 
single classifier predicate PAR; now, English features will 
trigger a PAR representing a motif.  During planning, the 
motif PAR can use English text features and 3D invisible 
world data to decide how to expand its sub-actions – how 
to select and arrange the classifier predicates to express it. 

Motifs are quite domain-specific in their 
implementation; so, questions can be raised as to what 
degree of linguistic coverage this design could achieve.  
This MT approach is certainly not meant to cover all 
English input sentences – only those that should be 
translated as classifier predicates.  While domain-
specificity can sometimes make an MT approach 
impractical to use, this design is meant to be embedded 
within a complete (possibly existing) MT system for 
English-to-ASL that uses traditional MT technologies to 
handle the majority of English inputs.  Because these 

                                                   
4 A stochastic motif genre-identifier could also be induced 

from statistical analyses of English texts known to produce a 
certain type of classifier predicate translation. 
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other MT processing pathways would be available, this 
design can focus on linguistic depth, rather than breadth.   

With the linguistic coverage of the initial system 
as a baseline, the addition of this design would improve 
the coverage incrementally by bringing additional genres 
(domains) of classifier predicate expressions into the 
system’s ASL repertoire as new motifs are implemented.  
The non-classifier translation pathways of the MT system 
would handle those spatial sentences still outside of the 
motif coverage. The other pathways would likely produce 
an overly English-like form of signing for these spatial 
sentences: a less desirable but somewhat useful result.     

Relating Motifs to ASL Linguistic Models 
The previously discussed linguistic models did 

not include a level of representation analogous to a motif 
because these models were focusing on a different part of 
the classifier predicate generation problem.  Only after a 
signer has decided what spatial information to 
communicate (content selection) and how to sequence its 
presentation (propositional ordering) do these models 
describe how to build an individual classifier predicate 
(surface generation).  They account for how humans 
produce single classifier predicate expressions – not how 
they plan the elements of an entire scene. 

Linguistic models that do explain how human 
signers conceptualize 3D scenes also do not use a motif-
analogous representation.  Here, the reason may be that 
the generation task for a human is significantly different 
than the translation task for a computer.  For example, 
Liddell (2003a) discusses how signers could plan a 3D 
scene and use multiple interrelated classifier predicates to 
describe it, but his model relies on the human ASL 
signers’ rich mental visualization of objects in a 3D space 
and their ability to map (or “blend”) these locations to the 
physical signing space.  In a translation setting, the mental 
3D visualization of the English speaker is not available; 
the English text is the only source of information about 
the scene.  Because English generally includes less spatial 
detail than ASL when describing 3D space, both MT 
systems and human ASL interpreters are faced with the 
problem of understanding the English description and 
reconstructing the scene when producing classifier 
predicates.5  Although not as robust as a human ASL 
interpreter, the AnimNL software can help this MT system 
create a 3D representation from the English text.  But we 
are still left with the task of interpreting the English text 
for semantic and discourse cues to help guide our 
selection of classifier predicates to express this 3D scene.  
Therefore, motifs are triggered and informed by features 
from the analysis of the English text. 

As a final linguistic concern, it is useful to 
consider whether the addition of motifs (that use 3D data) 
to design 3 has placed this system in further conflict with 
the polymorphemic model (Supalla, 1978, 1982, 1986). 
While this may initially appear to be the case, the addition 
of motifs is actually neutral with respect to this model.  
The model claims that an individual classifier predicate is 
composed from discrete morphemes, but it does not 
preclude the human signer from using mental 3D 
visualization of the scene during the deeper generation 

                                                   
5 And neither is perfect at this task. 

processes (those which overlap with the work of motifs).  
So, the point where the model diverges with this approach 
is the same as where it diverged from the original design 3 
– when 3D data is used to fill the parameters of the 
classifier predicate PAR.  This surface generation stage 
produces the non-categorical movements and locations of 
the classifier predicate output. 

Discussion 

Advantages of Virtual Reality 
The 3D representation in this design allows it to 

consider spatial information when making generation 
decisions.  Not only does this help make the generation of 
individual classifier predicates possible, but it also allows 
the system to potentially consider factors like spatial 
layout or visual salience when making deeper generation 
choices inside motifs – something a system without a 3D 
representation could never do.   

This virtual reality representation for the space 
used by ASL classifier predicates may also be a basis for 
transcribing or recording these ASL phenomena 
electronically.  A listing of the 3D objects currently in the 
invisible world with their properties/coordinates and a 
fully specified/planned arm movement PAR could be used 
to record a classifier predicate performance of a human 
signer.   This approach would record more movement 
detail than classifier predicate glosses used in the 
linguistic literature, which merely describe the motion in 
English words and the handshape used.  It would also be 
more informative than a simple movement annotation 
since it could store its non-spatial semantics (the semantic 
features that triggered the movement template), its spatial 
semantics (the locations of the 3D objects in the scene 
which it is describing), and the identities of those objects 
(what discourse entities are they representing).  This 
additional information would likely be of interest to 
researchers studying these phenomena or building MT 
systems to handle them. 

The 3D representation also allows this system to 
address ASL phenomena aside from classifier predicates 
in novel and richer ways.  One example is the non-
topological use of the ASL signing space to store locations 
for pronominal reference or agreement (Neidle et al., 
2000).  These locations could be modeled as special 
objects in the invisible world.  The layout, management, 
and manipulation of these pronominal reference locations 
(or “tokens”) is a non-trivial problem (Liddell, 2003a), 
which would benefit from the rich space provided by the 
virtual reality representation.  If an ASL discourse model 
were managing a list of entities under discussion, then it 
could rely on the virtual reality representation to handle 
the graphical and spatial details of where these “tokens” 
are located and how to produce the “pointing” arm 
movements to refer to them. 

The virtual reality representation could also 
facilitate the production of pronominal reference to 
entities that are “present” around the signing character.  
For instance, the character may be embedded in an 
application where it needed to refer to “visible” objects 
around it in the 3D virtual reality space or to computer 
screen elements on a surrounding user-interface.  To make 
pronominal reference to an object in the visible 3D virtual 
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reality space, a copy of this object could be made inside of 
the signing character’s invisible world model.  Then this 
invisible world copy could be treated like a “token” by the 
generation system, and pronominal references to this 
location could be made in the same way as for the “non-
present” objects above.  If the 3D object changed location 
during the signing performance, then its invisible world 
“token” counterpart can be repositioned correspondingly.   

The AnimNL software makes use of 
sophisticated human characters that can be part of the 
scenes being controlled by the English text.  These virtual 
humans possess many skills that would make them 
excellent ASL signers for this project: they can gaze in 
specific directions, make facial expressions useful for 
ASL grammatical features, point at objects in their 
surroundings, and move their hand to locations in space in 
a fluid and anatomically natural manner (Badler et al., 
2000; Bindiganavale et al., 2000).  When passed a 
minimal number of parameters, they can plan the 
animation and movement details needed to perform these 
linguistically useful actions.  If one of these virtual 
humans served as the signing character, as one did for 
(Zhao et al., 2000), then the same graphics software would 
control both the invisible world representation and the 
ASL-signing character, thus simplifying the 
implementation of the MT system. 

Current Work  
Currently, this project is finishing the 

specification of both the classifier predicate generation 
design and a multi-pathway machine translation 
architecture in which it could be situated (Huenerfauth, 
2004).  Other research topics include: defining evaluation 
metrics for an MT system that produces ASL animation 
containing classifier predicates, developing PAR-
compatible ASL syntactic representations that can record 
non-manual signals, and specifying ASL morphological or 
phonological representations that can be integrated with 
the PAR-based animation framework. 
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