

Engaging Content Engaging People

Investigating Motion History Images and **Convolutional Neural Networks for Isolated Sign** Language Fingerspelling Recognition

Hafiz Muhammad Sarmad Khan

SFI: ADAPT Centre for AI-Driven Digital Content Technology

sarmad.khan@adaptcentre.ie

Introduction

Simon D McLoughlin

Technological University Dublin Simon.D.McLoughlin@tudublin.ie

Irene Murtagh

SFI: ADAPT Centre for Al-Driven Digital Content Technology Irene.murtagh@adaptcentre.ie

Performance Evaluation

- Our evaluation of CNN architectures on the augmented ISL-HS dataset demonstrates promising results.
- Affirms the effectiveness of deep learning in sign language recognition.
- Densenet models, particularly Densenet 121, outperform other architectures.

Table 3: Confusion Matrix for Densenet 121

Confusion Matrix (True Positive Labels)

The research aims to improve communication for the deaf and hard-ofhearing community through computational processing.

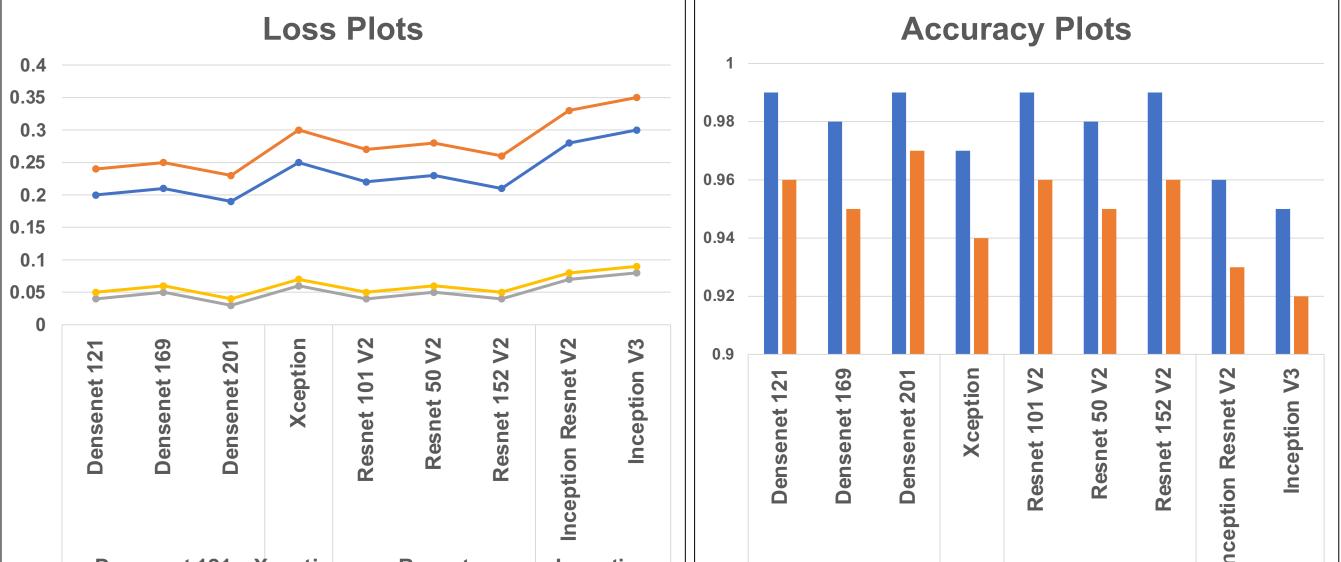
- Using the ISL-HS dataset and state-of-the-art deep learning architectures, we focus on recognizing the Irish Sign Language (ISL) fingerspelling alphabet.
- Employed the Motion History Images (MHIs) for monitoring sign language motions and investigate the effectiveness of various CNN architectures in deciphering intricate motion patterns.

Problem Statement

- Enhance comprehension in Irish Sign Language communication by developing an efficient system for automatically annotating sign language.
- Leveraging advanced artificial intelligence technologies as our primary objective.
- Initial focus on Irish Sign Language recognition.

Proposed Methodology

Dataset & Pre-processing:


• We utilize the Irish Sign Language hand-shape dataset (ISL-HS) containing static gestures and dynamic motions representing the English alphabet.

Pre-processing involves converting raw video frames into Motion History Images (MHIs) to highlight temporal differences and data augmentation.

Model Development:

- We utilize Convolutional Neural Networks (CNNs) as the core methodology. •
- Experimented with various advanced CNN architectures such as Densenet, Xception, Resnet, and Inception models known for their image analysis capabilities.
- These architectures are chosen for their ability to discern the nuanced

Class	TP								
Α	49	G	49	Μ	52	S	32	Y	51
В	49	Н	37	N	29	Τ	38		
С	50		52	Ο	53	U	43		
D	36	J	54	Р	42	V	42	Z	54
E	51	K	42	Q	43	W	38		
F	44	L	49	R	34	X	54		

patterns of hand movements essential for ISL recognition.

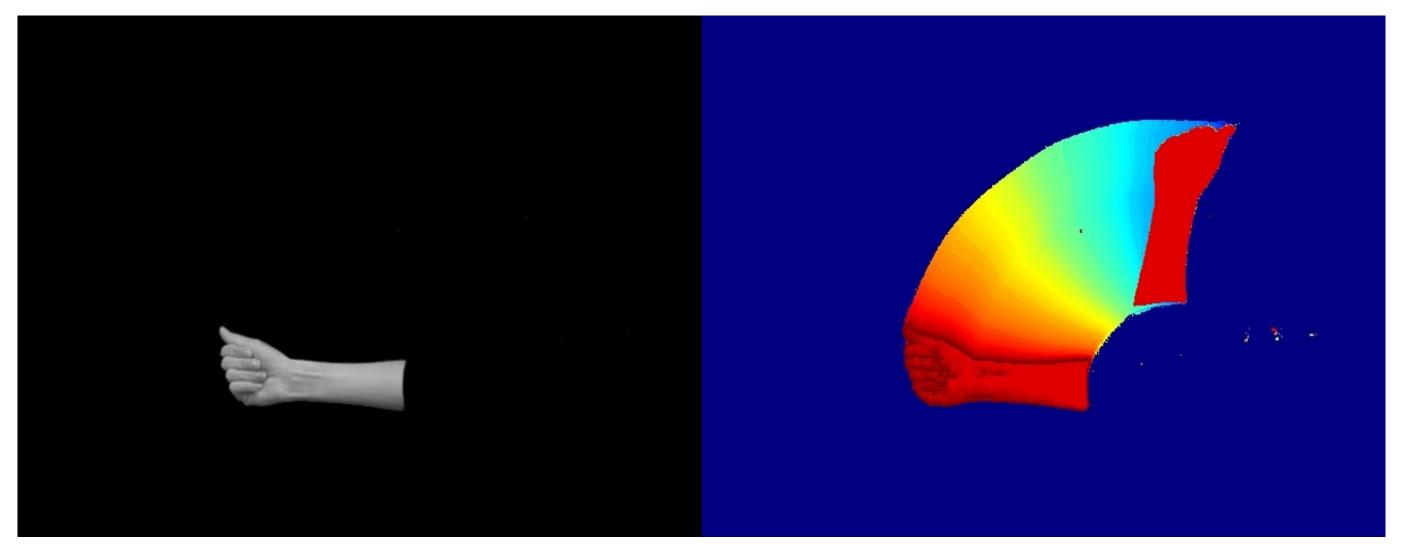


Figure 1: Original Handshape Image from ISH-HS (Left) and Generated MHI (Right)

Description	Total Images	Images Per Class2235		
Original Images	58112			
Post MHI Images	468	18		
Post-Augmented Images	7020	270		
Training Set	4420	170		
Validation Set	1196	46		
Testing Set	1404	54		

Table 1: Dataset Overview: Original, processed, and augmented images distribution.

Densenet 121 Xception	Resnet	Inception				ŭ
Training Loss (Epoch 1)	-Validation Loss	(Epoch 1)	Densenet 121	Xception	Resnet	Inception
Training Loss (Epoch 20)	-Validation Loss	(Epoch 20)	Final Train Acc	curacy Fin	nal Validatio	on Accuracy

Figure 2: Performance evaluation showing Loss Plots (Left) and Accuracy Plots (Right).

Table 3: Evaluation Metrics

Model	Architecture	Accuracy				
Densenet	121	90.38				
	169	89.60				
	201	90.10				
Resnet	50 V2	81.84				
	101 V2	81.62				
	152 V2	82.34				
Xception	Xception	80.56				
Inception	V3	75.76				
	Resnet V2	77.64				

Conclusion

- The research aims to improve communication for the deaf and hard-ofhearing community through computational processing.
- Using the ISL-HS dataset and state-of-the-art deep learning architectures, we focus on recognizing the Irish Sign Language fingerspelling alphabets.
- Employed the Motion History Images (MHIs) for monitoring sign language motions and investigate the effectiveness of various CNN architectures in deciphering intricate motion patterns.

References

- Linguistic Approach. Edinburgh University Press, 2012, pp. 256. [Online]. Available: Leeson and J. I. Saeed, Irish Sign Language: A Cognitive
- https://www.jstor.org/stable/10.3366/j.ctt3fgrr5. M. Oliveira et al., "A Dataset for Irish Sign Language Recognition," Dublin City University, Ireland; Trinity College Dublin, Ireland; Arab Academy for Science & Technology, Egypt. [Online]. Available: https://core.ac.uk/download/pdf/95876247.pdf.

This research was conducted with the financial support of Science Foundation Ireland at ADAPT, the SFI Research Centre for AI-Driven Digital Content Technology at TU Dublin [13/RC/2106 P2]. For the purpose of Open Access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission

