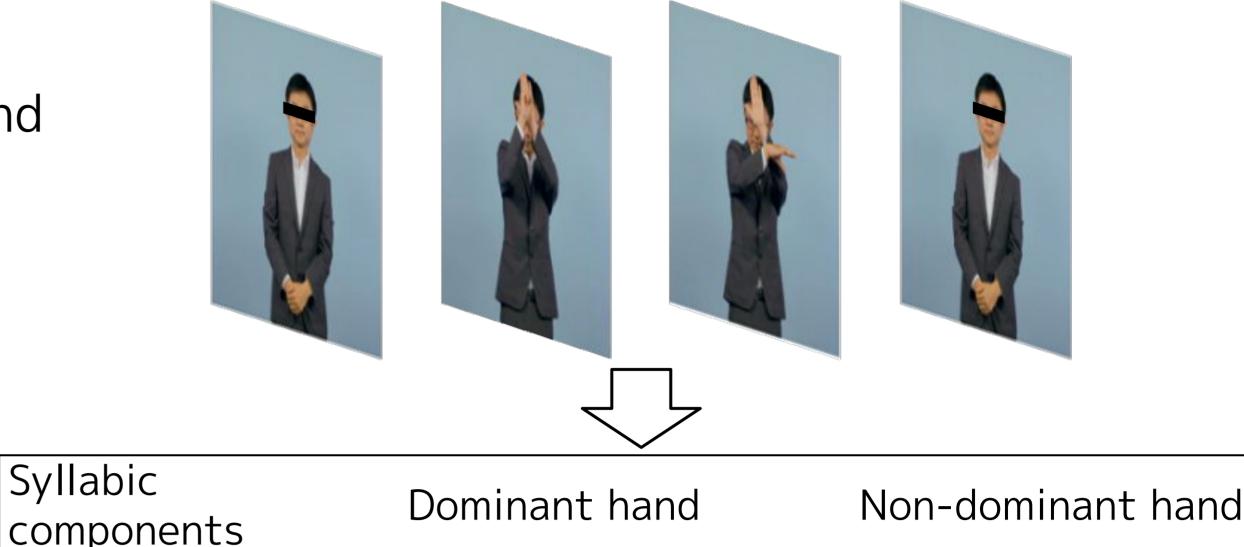
Enhancing Syllabic Component Classification in Japanese Sign Language by Pre-training on Non-Japanese Sign Language Data

Jundai Inoue, Makoto Miwa, Yutaka Sasaki, and Daisuke Hara Toyota Techonological Institute, Japan {sd24410, makoto-miwa, yutaka.sasaki, daisuke}@toyota-ti.ac.jp

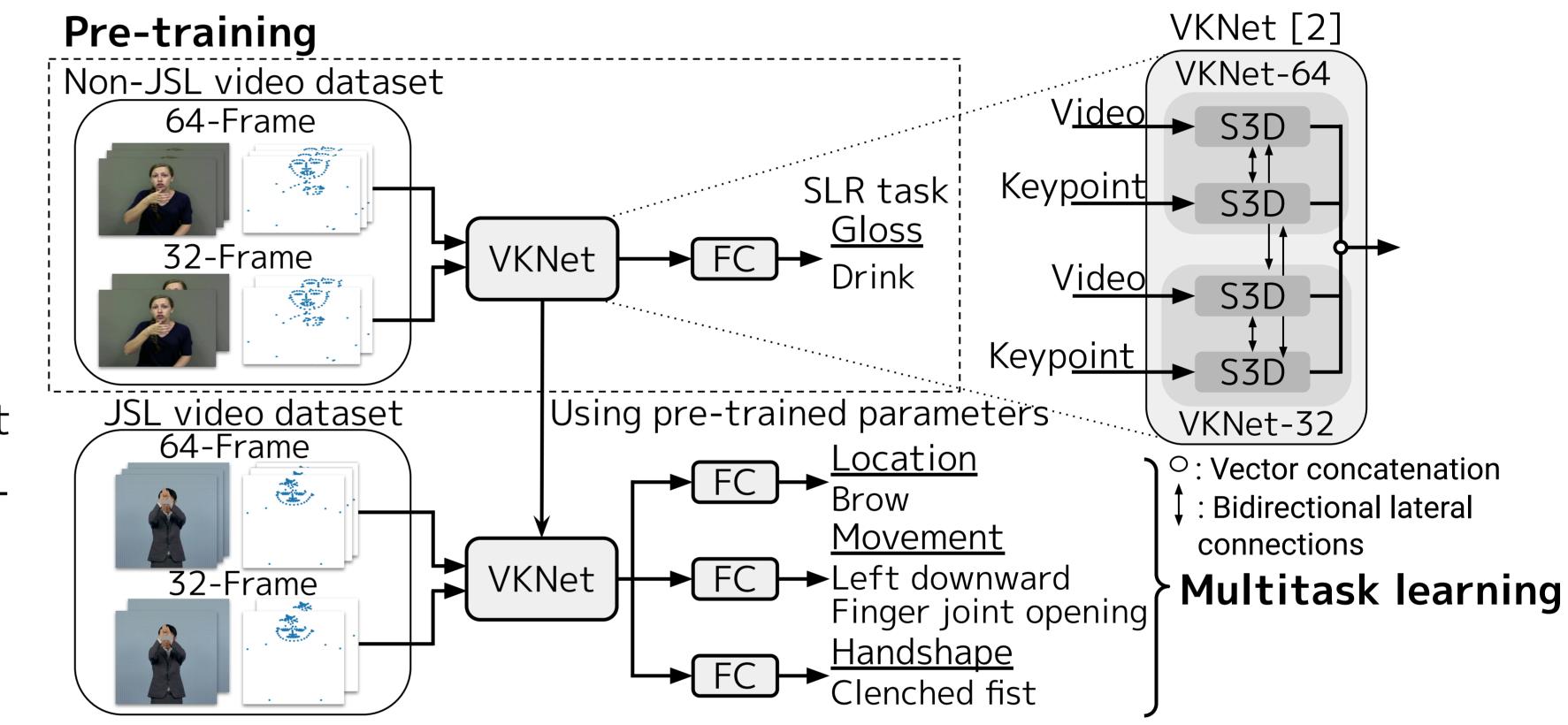

Introduction

Background

- Syllables of the sign language are combinations of syllabic components, and the composition rules for the syllables are still unclear. [1] • Locations, movements, and handshapes are the syllabic components
- \Rightarrow We want to decompose a number of syllables into syllabic components to analyze the rules, but manual decomposition is costly.

Objective

• This study aims to construct an automatic syllabic component classification system for Japanese Sign Language (JSL). • As the first step toward this goal, this study focuses on the location, movements, and handshape of the dominant hand.



• The number of JSL videos with labeled syllabic components is limited

Location	Brow	Brow
Contact	Non-dominant palm	Brow
Movements	Left downward	-
	Finger joint opening	_
Handshape	Clenched fist	Flat hand
hand orientation	Left	Forward

Method

- We propose a method for classifying syllabic components in JSL videos using pre-training on a non-JSL dataset.
- Classifying syllabic components in JSL videos
 - Multiclass classification for the location and handshape components
 - Multilabel classification for the movement component
- Pre-training VKNet [2] on a large amount of non-JSL data to address the problem of **limited data in JSL**
- Multitask learning of syllabic components to share the information among syllabic components

Experiments & Discussion

Experimental settings

- Syllable database in JSL [3]
 - 1,072 syllable videos recorded with a single signer
 - 22, 55, and 69 categories for location, movement, and handshape components

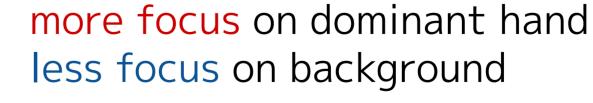
#	Handshape	#	Location	#
142	A	138		835
135		125	Temples	40
120	(m)	57	Mouth	32
117	E.	55	Chest	23
	135 120	142 135 120	142 138 135 125 120 7	142 138 138 135 125 Temples 120 57 Mouth

• Pre-training dataset: WLASL [4] 2,000 glosses for Sign Language Recognition (SLR) • Evaluation: micro-F score

<u>Results</u>

- The pre-training method improved the performance of movement and handshape components.
- Multitask learning was ineffective or harmful in classifying syllabic components of JSL.

Method	Location	Movement	Handshape
VKNet	80.33 (±1.06)	38.55 (±1.25)	35.20 (±2.55)
+ Pre-training	81.16 (±2.05)	52.41 (±0.86)	44.72 (±3.55)
+ Multitask learning	81.99 (±0.00)	45.76 (±0.82)	42.23 (±1.34)


Discussion

- To verify the influence of pre-training, we visualized the part of the video VKNet focused on, using AOSA [5].
- \Rightarrow VKNet focused on the dominant hand due to pre-training on ASL.

	Train	Dev	Test
Syllable datasbase	750	161	161
WLASL	14,289	3,916	2,878

Conclusions & Future Work

<u>Conclusions</u>

- Objective: Constructing a syllabic component classification system based on JSL videos using deep learning.
- Method: Syllabic component classification for the dominant hand using pre-training on ASL data and multitask learning
- Results: Pre-training improved performance of movement and handshape components, but multitask learning was not effective

Future Work

- Classify syllabic components for both the dominant and non-dominant hands
- Examine models and training methods to improve classification performance

References

- [1] Hara. An information-based approach to the syllable formation of Japanese Sign Language. 2016
- [2] Zuo et al. Natural language-assisted sign language recognition. CVPR, 2023
- [3] Hara. New Japanese Sign Language Coding Manual. (In Japanese). 2019
- [4] Li et al. Word-level deep sign language recognition from video: A new large-scale dataset and methods comparison. WACV, 2020
- [5] Uchiyama et al. Visually explaining 3d-cnn predictions for video classification with an adaptive occlusion sensitivity analysis. WACV, 2023