
Improvements of the Distributed Architecture for Assisted Annotation of video

corpora

R

´

emi Dubot, Christophe Collet

IRIT
Université de Toulouse

remi.dubot@irit.fr, christophe.collet@irit.fr
Abstract

Progress on automatic annotation looks attractive for the research on sign languages. Unfortunately, such tools are not easy to deploy
or share. We propose a solution to uncouple the annotation software from the automatic processing module. Such a solution requires
many developements: design of a network stack supporting the architecture, production of a video server handling trust policies,
standardization of annotation encoding. In this article, we detail the choices made to implement this architecture.

Keywords: Annotation, Sign Languages, Automatic Annotation, Distributed Architecture

Linguists need annotations of sign language video corpora.
Video corpus annotations are mainly done manually on An-
notation Tools (ATs). This work is really time-consuming
and frequently repetitive. To support this claim, we can
consider the literature regarding annotation tools of the last
couple of years. There are two remarkable trends: collabo-
rative annotation and automatic annotation. Works on col-
laborative annotation focus on the workflow (Hofmann et
al., 2009; Brugman et al., 2004). About automatic annota-
tion, we had a look on ELAN and ANVIL. ELAN (Auer et
al., 2010) provides a plug-in interface, called ”Recognizer
API”, for automatic processing. A trick is given to run the
module on a different machine through the network but it is
restricted to local network. ANVIL (Kipp, 2010) provides
different kinds of processing based on co-occurrence mea-
surements on annotations and motion characteristics extrac-
tion from motion capture.
As far as we know, most of automatic tools are developed
as standalone prototyping software, finally remaining as in-
house systems that continue to be used only by the team that
have developed them. Barriers to their use in production are
numerous: “temporary” privacy of sources and executables,
deployment difficulty (run only in a specific environment,
need a powerful machine), integration constraints (incom-
patible programming languages, running on different OS,
etc.). We think that the architecture we have developed
greatly simplifies this integration.
We have designed an open and distributed system for the
integration of automatic processing in annotation tools. We
consider that it will encourage collaboration initiatives. Our
idea is to let every part of the system do what it does best.
Each automatic processing tool will run on the module fit-
ting the best. Videos are hosted by a dedicated server. And
finally, manual annotation will be done on the annotator’s
computer.
What we provide is the solution to make all this working
together. We see three parts in this problem:

• Service discovery,

• Security,

• Compatibility.

This article first shows the global architecture and the
agents involved. Then, it details stage by stage the stack
of protocols. Finally, it presents, as an evaluation, the au-
tomatic annotation modules already done and a preview of
the potential offered.

1. Architecture

An early version of this architecture was presented in (Col-
let et al., 2010). At that time, the architecture was only
partially implemented. The finalization leads us to make
several adjustments and the new developed architecture is
presented now. The system is based on four types of agents,
from which three have been already presented in the intro-
duction:

• The first type of agent is Annotation Tools (AT). Any
annotation tool can be extended to allow its integration
in the architecture. We already provide an annotation
tool: AnColin.

• The second type of agent is Automatic Annotation As-
sistants (A3).

• The third type of agent is the server hosting the videos
(VFS: Video-File Server)

• The last type agent is a service directory, it is in charge
to reference A3s. When an annotator wants to use an
automatic process, his AT will retrieve the list of all
currently available functions from the A3S.

These four agents are represented in figure 1.
We call an instance of this architecture a Distributed Anno-
tation System (DAS).

2. Stack

2.1. Network

As agents are not necessarily located in the same local net-
work, they communicate over the Internet. One of our ob-
jectives is to facilitate the deployment of automatic process-
ing, this implies to let the implementation of the process-
ing part as free as possible from constraints coming from
the architecture. The consequence is a high heterogeneity

27

Automatic Annotation
Assistant Supervisor

(A3S)

Available A3 List
ID-@-Port–API–V-Help

... - ... - ... - ...

Available A3 List
ID-@-Port–API–V-Help

... - ... - ... - ...

Automatic Annotation
Assistants (A3)

Video File Server
(VFS)

Annotation Tool

Manages the list
of available
treatments (A3)
and their
metadata.

A3s host video
treatments which can
be developed in any
programing language,
operating system or
hardware.

Annotator's
interface. Any
video can be
easily visualized
and annotated.

Stores database
corpus and
videos resulting
from a treatment. Communication

through the
network using
SOAP

A3

A3

A3

Users accounts

A3 accounts

Figure 1: Overview of the system

in terms of programming language, operating system, etc.
To insure the low level compatibility between elements we
use SOAP (W3C, 2007). SOAP is an open source, multi-
platform middle-ware. It uses the HTTP protocol for com-
munications which is important as it allows to pass through
proxies. Because some information traveling on the net-
work might be confidential, a TLS (former SSL) layer is
added under SOAP. This layer encrypts all the communica-
tions. We will see below that TLS provides us several more
services.
The Internet, SOAP and TLS are enough to have flexi-
ble and secure end-to-end communication, now we have to
look at how agents find one another on the network. An in-
stance of the architecture must have one VFS and one A3S.
It is the solid part of the architecture. Instances of the two
other agents, ATs and A3s, have to be configured to use
a VFS and an A3S. Therefore the VFS and the A3S must
have static addresses. At launch, A3s provide their status
and their network addresses to the A3S. ATs get the A3s’
addresses with their specifications when it retrieves the list
of available functions. This sequence is summarized in the
figure 2.

2.2. Authentication

The authentication, in a communication, refers to the mean
of identifying the end-users.
Most of our authorization/trust policy relies on identities
consequently we must have a solution to identify agents.
On computers, there is a common solution for authentica-
tion which makes use of asymmetric cryptography. Con-
cretely, each agent which has to identify itself must have a

:AT :A3 :A3S

getList()

getAPI(function)

register()

process()

Figure 2: A3S working sequence

certificate, signed by a Certification Authority, which links
its identity (name, email, etc.) to its public key. Such cer-
tificates are called X.509 certificates. The TLS protocol
provides an authentication service using X.509 certificates.
Each agent must have its own certificate. Individual certifi-
cates are shown as keys in figure 1. The complete task of
authentication is done by TLS.
Signed certificates are not necessarily free, in most cases
Certification Authorities sell this service at high costs.

28

However, there are two low cost solutions:

• When many sites are involved, we recommend the
use of certificates focusing only on the email address
which are generally free.

• When one or few sites are involved, it is possible to
setup a local Certification Authority.

2.3. Authorization

The authorization refers to rights policy, agents having the
possibility of knowingly choose whether to serve another
agent or not.
Videos are a sensitive point, mainly because they are under
restrictive image rights. Consequently, the VFS has to man-
age trust in AT users and A3s regarding the videos. Our im-
plementation of the VFS allows a fine rights management
for user access to videos and uses a mechanism of jobs to
limit to its minimum the data given to A3s. This is symbol-
ized by certificate collections under the VFS in figure 1.
A3S and A3s might manage authorization too, but currently
we do not see any reasons not to let them publicly available.
Finally, as ATs do not provide any service to other agents,
there is no authorization to manage on this side.

2.4. Encoding

We use Annotation Graphs (Bird and Liberman, 2001) as
our standard annotation structure for exchanges. However,
the AG model was designed to be as general as possible and
consequently has gaps. To overcome this, we have made
an extension of AGs. This extension is backward compat-
ible with AGs. This means all ATs handling AGs (ELAN,
ANVIL, etc.) are already able to deal with the files gener-
ated by an A3. We will not detail all the features brought by
this extension, only the two directly linked to the distributed
architecture. First, we add the concepts of a track (identi-
cal to the concept of a tier) and a group of tracks forming a
hierarchy (a tree or a lattice). Second, we add the concept
of a type. Here, we talk about types for the content of an-
notations (the values inside segments). The need of track
hierarchy is self-evident. We are going to address in detail
the question of why and how to type the values.
Untill now, nothing has been done in the field of annotation
encoding to encourage data homogeneity. Consequently,
there is a high heterogeneity in data encoding. It leads to
problems like “In these vectors, which component is the
horizontal one?” or “How was this bounding box encoded?
two corners? a corner and a size?”, etc. And while it is
annoying for humans, it is really problematic for automatic
tools. The compatibility between A3s depends on the ho-
mogeneity of data. An A3 producing bounding boxes and
an other processing bounding boxes must share the same
encoding, even if there were developed fully independently.
This is a constraint to allow users to process the results of
the first A3 with the second one. The homogeneity is also
necessary to have a smart display and edition of annota-
tions. Our solution is to affect types (as in computer lan-
guages) to annotation data. The type system we present
below has been able to handle all annotations we use in our
team currently.
We split the task in two parts:

• Making a type system able to deal with all kind of data
appearing in annotations.

• Making types for all the common data and collect
them all in a library.

2.4.1. Types

To describe types, the model defines 3 atomic types and 4
construction rules. The 3 atomic types are:

• Integer: An integer.

• Float: An approximation of a real number.

• String: A string.

• Empty: This is intended to be a base to build a kind
of boolean types. It is used when the information is
contained in segments’ positions and segments’ values
are meaningless.

The 4 construction rules are:

• Copy: Makes a copy of a type. Allows to makes syn-
onyms.
Example of definition:
Distance:= Copy(Float).
Example of valid instance of Distance:
12.3.

• List: Describes a list of values sharing the same
type.
Example of definition:
Glose:= List(String).
Example of valid instance of Glose:
["to drive","car"].

• Struct: Describes a set of named and typed fields.
Example of definition:
HeadPose:= Struct(roll:Float, yaw:Float,

pitch:Float).
Example of valid instance of HeadPose:
{roll:3.14, yaw:42.0, pitch:2.72}.

• Union: Allows to take values between multiple types.
Example of definition:
Head:= Union(HeadPose,String).
Example of valid instance of Head:
"profile".

• Constant: Allows to make a constant of a given
type.
Mainly used coupled with Union for enumerations.
Example of definition:
hello:= Constant(String,"hello").
Example of enumeration Head:
voc:= Union(Constant(String,"hello"),Constant(String,"goodbye")).

The abstract type system may be extended if needed. But
we want the type encoding to stay stable. The format
we chose is XML Schema (Fallside and Walmsley, 2004).
XML Schema is far more generic than our type system and
allows many extensions of the abstract system.
We give translation schemes between abstract type system
and XML Schema.

29

2.4.2. Common Type Library

To standardize the encoding of annotations, we maintain
a standard type library which takes the form of an XML
Schema Definition (XSD). It is intended to be online.
The detail of the current content of the CTL is the follow-
ing:

• Vector2D.

• Point2D.

• BoundingBox: Encodes bounding box with the
upper left corner as a Point2D and the size as a
Vector2D.

• List2DPoint: Encodes a list of Point2D.

• Hamnosys: Encodes Hamnosys description.

• Empty.

This list will grow quickly as soon as A3s will be used in
production.

3. Use

We maintain our own AT, AnColin, which fully integrates
this architecture. Up to now, four A3s has been devel-
oped: Signing detection, sign segmentation, body part
tracker (Gonzalez and Collet, 2011) and facial feature
tracker.
The first A3 concerns the detection of signing activity. In
a corpus of dialogue, the signers take turns to talk. This
means that there are times where one of the participant is
just listening. This A3 detects where in the sequence the
informant is actually signing. The core of this A3 has been
provided by Helen Cooper from University of Surrey.
The second A3 regards the segmentation of continuous sign
language. It uses hand movement analysis to detect limits
between signs.
The third A3 tracks hands and head using a particle filter
based approach. It robustly handles hand-over-head occlu-
sion using a template before occlusion (Gonzalez and Col-
let, 2011).
The last A3 uses a small quantity of hand labelled images
to learn a set of facial feature trackers, which can be applied
across segments of video. The tracker is based on the linear
predictor flock method as described in (Ong and Bowden,
2011).
A3s produce a great amount of technical data. Rendered
as text, data is difficult to visualize and to edit for humans.
The use of automatic processing induces a new need for
visualization and editing tools. The type feature is the base
for such features. We have introduced two kind of tools to
AnColin:

• Head-Up Display (HUD) modules which are in charge
to display and edit annotations directly on the video.
We currently have two modules: one for bounding
boxes, the other for cloud of points.

• Segment display and edition modules which are in
charge to display and edit annotations on the tracks.
We currently have one generic module able to gener-
ate forms from types.

As an example of possible applications, we are able to chain
A3s and finally display results with HUDs, making work-
flows. Examples of workflows already possible:

• SigningDetection ! FaceTracking !
HUD(BoundingBox)

• SigningDetection ! FaceFeatureTracking !
HUD(PointCloud)

4. Conclusion

We have introduced an architecture for distributed annota-
tions and the protocol stack of communications in this ar-
chitecture. Everything presented here has been completely
implemented. On the other hand, many parts are not sta-
ble enough to be used in production. Some elements which
were written as prototypes are being rewritten and others
are being stabilized. However we have experimented with
using the architecture. The list of A3s is currently short but
presenting state-of-the-art tools and expected to grow.

5. References

E. Auer, A. Russel, H. Sloetjes, P. Wittenburg, O. Schreer,
S. Masnieri, D. Schneider, and S. Tschöpel. 2010.
ELAN as flexible annotation framework for sound and
image processing detectors. In International workshop
on the Representation and Processing of Sign Lan-
guages: Corpora and Sign Language Technologies
(LREC), Valletta, Malte.

S. Bird and M. Liberman. 2001. A formal framework for
linguistic annotation. Speech Commun., 33(1-2):23–60.

H. Brugman, O. Crasborn, and A. Russel. 2004. Col-
laborative annotation of sign language data with peer-
to-peer technology. In 4th International Conference on
Language Resources and Evaluation, pages 213–216.

C. Collet, M. Gonzalez, and F. Milachon. 2010. Dis-
tributed System Architecture for Assisted Annotation of
Video Corpora. In International workshop on the Rep-
resentation and Processing of Sign Languages: Corpora
and Sign Language Technologies (LREC), pages 49–52,
Valletta, Malte, May. European Language Resources As-
sociation (ELRA).

D. C. Fallside and P. Walmsley. 2004. XML Schema: W3C
Recommendation. http://www.w3.org/TR/schema.

M. Gonzalez and C. Collet. 2011. Robust body parts track-
ing using particle filter and dynamic template. In IEEE
Int. Conf. on Image Processing, pages 537–540, Brus-
sels, Belgium.

C. Hofmann, N. Hollender, and D. Fellner. 2009.
Workflow-based architecture for collaborative video an-
notation. Online Communities and Social Computing,
pages 33–42.

M. Kipp. 2010. Multimedia annotation, querying and anal-
ysis in ANVIL. Multimedia Information Extraction, 19.

E.-J. Ong and R. Bowden. 2011. Robust Facial Fea-
ture Tracking Using Shape-Constrained Multiresolution-
Selected Linear Predictors. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 33:1844–1859.

W3C. 2007. Recommendation of the W3C.
http://www.w3.org/TR/soap/.

30

