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Abstract
This work proposes to learn linguistically-derived sub-unit classifiers for sign language. The responses of these classifiers can be com-
bined by Markov models, producing efficient sign-level recognition. Tracking is used to create vectors of hand positions per frame as
inputs for sub-unit classifiers learnt using AdaBoost. Grid-like classifiers are built around specific elements of the tracking vector to
model the placement of the hands. Comparative classifiers encode the positional relationship between the hands. Finally, binary-pattern
classifiers are applied over the tracking vectors of multiple frames to describe the motion of the hands. Results for the sub-unit classifiers
in isolation are presented, reaching averages over 90%. Using a simple Markov model to combine the sub-unit classifiers allows sign
level classification giving an average of 63%, over a 164 sign lexicon, with no grammatical constraints.

1. Introduction
Sign Language Recognition (SLR) has many parallels to
speech recognition, the idea which has been seized by many
is that of combining sub-units into word level classifiers.
Doing this has several advantages; it allows the lexicon to
be increased in a manageable manner. It removes much
of the temporal variance between repetitions of the same
sign. It enables linguistics to be used, to add priors to the
sub-unit combinations and it could feasibly lead to classifi-
cation of unseen signs based on their component parts and a
dictionary. For these last two advantages to be realised, the
sub-unit classifiers need to be derived from the linguistic
domain.
Previous systems using tracking-based, sub-unit classifiers,
have tended to either hard code basic sub-units (Kadir et
al., 2004) or used data driven approaches (Han et al., 2009;
Yin et al., 2009). While both these techniques can give
good sign level results, they bear little relation to the lin-
guistics of sign language. Instead, the sub-unit classifiers
proposed in this paper are learnt from data, annotated at
the sub-unit level, using the same notation as that in the
British Sign Language (BSL) Dictionary (British Deaf As-
sociation, 1992).
In this work, first the signer is tracked, then sub-unit, clas-
sifiers are learnt using boosting. Specifically, sub-units
relating to Position (Tab), Hand Arrangement (Ha) and
Movement (Sig) are covered. These classifier responses are
also shown in combination with a Markov chain Look Up
Table (LUT) to perform basic classification at the sign level.
The details of these classifiers are shown in the following
sections.

2. Method
Tracking results are obtained using Buehler et al.’s tracker
which does not require coloured gloves, whilst still giv-
ing accurate results, on natural sign from TV broadcasts
it achieves >80% (Buehler et al., 2008). The tracking sys-
tem gives boxes bounding the hands, lower arms and up-
per arms. The different sub-unit types are catered for by
different weak classifier concepts; Tab requires informa-
tion about positioning, Ha about the relationship between

the hands and Sig about the temporal changes in hand po-
sitions, often relative to each other. Each of the different
weak classifier types are combined using AdaBoost (Fre-
und and Schapire, 1995) to create a classifier for each sub-
unit present in the training set.

2.1. Tab Classifiers
Classifiers concentrating on Tab sub-units are concerned
with spatial features, describing the location of the hands
in relation to the signer. The bounding boxes of the hands
are given by the tracking and the position of the face can
be found using the Viola Jones face detector (Viola and
Jones, 2001). Classifiers can then be built which consider
relational distances. Each classifier operates on an x or y
feature, i, within the tracking vector, o, comparing it to
an upper and lower limit, TU and TL respectively. If the
value falls within this range, then the classifier fires. The
upper and lower limits are individual to each classifier and
calculated relative to the size (f ) and position (fxy) of the
signer’s face, see Equation 1.

TL = fxy + nf

TU = TL + sf

n ∈ {−3,−2.9,−2.8 . . . 3}
s ∈ {0.1, 0.2, 0.3 . . . 1}

Rwc =

{
1 if TL < oi ≤ TU

0 otherwise

}
(1)

Classifiers can work on the x or y co-ordinates of either the
dominant or non-dominant hand. Each classifier covers a
strip of a given constant width, either in the x or y plane.
Boosting is used to combine these weak classifier strips, to
create areas relative to the signer as shown in Figure 1. The
strips are shown by increasing the luminosity of the pixels.
When many weak classifiers overlap, the area turns white.
As can be seen, the white areas coincide with the area being
learnt, i.e. Figure 1(a) ‘face’ and Figure 1(b) ‘upper arm’.

2.2. Sig Classifiers
Sig sub-units describe the motion of a sign and require clas-
sifiers which encode temporal information. The tracking
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(a) Upper Arm (b) Face

Figure 1: Examples of tracked Tab classifiers for the areas
‘upper arm’ and ‘face’. Boosting combines strips in the x
and y planes to show where the hand is expected to be for
each Tab label. The lighter the area in the picture the more
strips are overlaying it.

provides a frame by frame set of co-ordinates for the hands
so motions can be described by changes in these values.
The sub-units from BSL linguistics do not encode magni-
tude information. Therefore the classifiers used to describe
them need to encode non-magnitude dependant informa-
tion. If the values from the tracking are concatenated tem-
porally into 2D vectors, then it is possible to examine indi-
vidual components across time. In this way, a weak classi-
fier can look for changes in, for example, the x co-ordinate
of the dominant hand. This would encode left and right mo-
tion of the dominant hand. Component values can either in-
crease, decrease or remain the same, from one frame to the
next. If an increase is described as a 1 and a decrease or ‘no
change’ is described as a 0 then a Binary Pattern (BP) can
be used to encode a series of increases/decreases. A tempo-
ral vector is said to match the given BP if every ‘1’ accom-
panies an increase between concurrent frames and every ‘0’
a decrease/‘no change’. This is shown in Equation 2 where
Oi,t is the value of the component, oi, at time t and bpt is
the value of the BP at frame t. See Figure 2 for an exam-
ple where feature vector A makes the weak classifier fire,
whereas feature vector B fails, due to the ringed gradients
being incompatible.

Rwc = |max
∀t

(BP (Oi,t))− 1|

BP (Oi,t) = bpt − d(Oi,t,Oi,t+1)

d(Oi,t,Oi,t+1) =

{
0 if Oi,t ≤ Oi,t+1

1 otherwise

}
(2)

Discarding all magnitude information would mean that
salient information might be removed. To retain this in-
formation, boosting is given the option of using additive
classifiers as well. These look at the average magnitude
of a component over time. The weak classifiers are cre-
ated by applying a threshold, Twc, to the summation of a
given component, over several frames. This threshold is op-
timised across the training data during the boosting phase.
For an additive classifier of size T , over component oi, the
response of the classifier, Rwc, can be described as in Equa-
tion 3.

Rwc =


1 if Twc ≤

T∑
t=0

Oi,t

0 otherwise

 (3)

Figure 2: An example of a BP being used to classify two
examples. A comparison is made between the elements of
the weak classifiers BP and the temporal vector of the com-
ponent being assessed. If every ‘1’ in the BP aligns with
an increase in the component and every ‘0’ aligns with a
decrease or ‘no change’ then the component vector is said
to match (e.g. case A). However if there are inconsistencies
as ringed in case B then the weak classifier will not fire.

Boosting is given all possible combinations of BPs, acting
on each of the possible tracking components. The BPs are
limited in size to being between 2 and 5 changes (3 - 6
frames) long. The additive features are also applied to all
the possible components, but the lengths permitted are be-
tween 1 and 26 frames. Both sets of weak classifiers can be
temporally offset from the beginning of an example, by any
distance up to the maximum distance of 26 frames.

2.3. Ha Classifiers
Ha sub-units explain the hand arrangement present in a
sign, e.g. which hand is higher or whether they are inter-
linked. Using the tracked positions on each frame, the x
and y values of all points can be compared. This can be
done using a magnitude comparison, as illustrated in Equa-
tion 4 where Oi,t is the first component and Oj,t is the
second, both on frame t. Though this does not encode any
information about the magnitude of the difference required
for the weak classifier to fire. Alternatively, for each point-
comparison, 11 weak classifiers are built. Each requiring a
different magnitude difference to fire. The difference mag-
nitude, Twc, is selected from a set of 0 to 50 pixels in 5 pixel
steps as shown in Equation 5. This selection of thresholds
gives (36!/(34!∗2!))∗11 = 6930 possible weak classifiers.

Rwc =

{
1 if (Oi,t ≤ Oj,t)

0 otherwise

}
(4)

Rwc =

{
1 if Twc ≤ (Oi,t −Oj,t)

0 otherwise

}
Twc = 0, 5, 10 . . . 50 (5)

3. Data Set
This work uses the same 164 sign data set as Kadir et
al. (Kadir et al., 2004) but with extra annotation at the sub-
unit level. 7410 Tab examples, 322 Ha examples and 578
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Label Ha HaM
left up 82.14% 87.21%
right up 67.83% 93.88%
side by side 91.01% 93.85%
contact 81.45% 87.13%
left nearer 91.67% 100.00%
right nearer 96.43% 87.50%
interlink 73.68% 96.55%
Mean 83.46% 92.30%
Std Dev 5.13pp 10.31pp

Table 1: Results of Ha and HaM tracking based classifiers

Sig were hand labelled for training viseme classifiers. The
data set consists of 1640 sign examples. Signs were cho-
sen randomly rather than picking specific examples which
are known to be easy to separate. Tab sub-units are static
and happen on a single frame with multiple frames per sign.
As such, the example counts are higher than those for Sig
which are movement visemes and happen across multiple
frames. Ha visemes are also static, however, they change
more quickly within a sign than Tab visemes. As a result,
there are often only one or two frames per sign which con-
tain the Ha value given by the BSL Dictionary.

4. Sub-Unit Results
For the tracked classifiers, six different types of classifiers
were tested for the three different sub-unit types. For Ha
sub-units, there are two possible classifiers; those which
make a binary comparison on the x and y positions of the
hands, and those described in more detail in Section 2.3.
where the magnitude of the difference is taken into account.
For Tab, the two classifiers tested are based on the labelling,
the first uses the labels independently, the second imple-
ments the hierarchical structures described in Section 2.1.
The Sig sub-unit classifiers were tested with both the stan-
dard labels and the revised component labels.
Classifiers are trained on sub-units from four out of ten
available signs, then tested on the sub-units from the re-
maining six. The results shown are taken from the diago-
nals of confusion matrices across each sub-unit type.

4.1. Ha Classifiers
First is the comparison between the results of the binary
comparison Ha classifiers and the comparators which take
the magnitude into account shown in Table 1. The for-
mer manage a good response with a mean true-positive
rate of 83.46% achieving a maximum 96.43%. The clas-
sifiers which include magnitude manage better on all la-
bels but one, with a true-positive mean of 92.30%, 9pp bet-
ter than the previous results. The magnitude comparators
also result in a more consistent classifier with a Standard
Deviation (Std Dev) half that of the binary comparison clas-
sifiers.

4.2. Tab Classifiers
Next, the tracked Tab classifiers are examined with the orig-
inal labels, see Table 2, the mean true positive classifica-
tion rate is poor, achieving only 46.95% with some clas-
sifiers getting 0%. Notably where it fails to distinguish

between ‘upper arm’ and ‘lower arm’. Moving to the hi-
erarchical label system, the first thing to note is that confu-
sions are only considered between labels of the same level
(e.g. ‘face’ is compared to ‘arm’ but not to ‘face lower’
or ‘arm upper’). This is because the data for some of the
lower levels is used as positive training data for the higher
labels, so a direct comparison cannot be made with the non-
hierarchical labels due to the changes in the way the confu-
sion matrices need to be constructed. However, when using
these labels, in the confusion matrix, the mean true-positive
rate is 79.84%, 33pp higher than the non-hierarchical ver-
sion. There is also a reduction of 10pp in the Std Dev sug-
gesting that this again gives a more consistent classifier.

Label Tab TabH
arm 97%

chest 80% 35%
face 47% 95%

arm low 85% 71%
arm up 0% 54%

chest right 0% 88%
chest up 75% 97%
face low 53% 78%
face side 75%

face up 71% 81%
chest up shoulder 91%

face low mouth 30% 59%
face low nose 39% 83%

face low underchin 72% 95%
face side cheek 30% 67%

face side ear 30% 81%
face up eyes 25% 75%

chest up shoulder right 69% 98%
Mean 46.95% 79.84%

Std Dev 27.90pp 17.73pp

Table 2: Results of Tabtracking based classifiers.

4.3. Sig Classifiers
The two versions of tracked Sig classifiers, like the previous
tracked Tab classifiers, are based solely on a change in the
way the training labels are used. The difference between
the Sig classifiers and the other sub-unit classifiers, is that
the Sig classifiers are boosted across more than one frame,
so the training data is used not only to create the classifiers
but also to choose the length of the chosen strong classifier.
Confusion matrices are calculated for each possible length
over the training data. Table 3 shows the results from the
training and testing. Sig classifiers (using the original la-
bels) give a training true-positive rate of 62%, which is
substantially higher than the test average of 48% achieved
when using the training derived lengths.
The outcome is similar when examining the results for
the new component based labels SigC. The best training
lengths give an average of 79% which is an increase of 17pp
over the non component based training system. This is re-
flected in the results when using the training lengths on the
test data, where a 53% level is attained, a 5pp increase on
the previous result.
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Label Si
gC
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g
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st

B apart 98% 74% 97% 81%
B circ tog down alt 69% 41% 0% 0%
B circ tog tow 82% 49% 0% 0%
B down 63% 53% 78% 67%
B tog 82% 52% 88% 66%
B tow away alt 92% 45% 94% 44%
B up 91% 71% 80% 72%
B up down 100% 93% 93% 87%
B up down alt 100% 97% 0% 0%
D away 58% 36% 75% 46%
D away down 67% 28% 0% 0%
D circ left down 83% 84% 100% 95%
D circ left tow 100% 98% 100% 98%
D down 44% 40% 77% 74%
D down away 46% 20% 0% 0%
D left 90% 48% 63% 61%
D left right 93% 51% 77% 33%
D right 48% 27% 33% 28%
D tap 67% 24% 44% 39%
D tow 87% 26% 100% 51%
D tow away 91% 37% 76% 48%
D wrist tow away 81% 58% 64% 34%
D up 88% 74% 96% 90%
Mean 79% 53% 62% 48%
Std Dev 18% 24% 38% 33%

Table 3: Results of Sig classifiers and SigC classifiers using
component based labels. The first column shows the maxi-
mum training classification achieved, the second shows the
rate when using the length, found via training, on the test
data.

5. Sign Level Results
For completeness, basic sign level results are shown using
the same Markov Model as that in (Kadir et al., 2004) The
second stage classifier is trained on the previously used four
training examples plus one other, giving five training exam-
ples per sign. Shown in Table 4 as the results of combining
the various sub-unit classifiers with the Markov model. The
best results are gained using the magnitude comparisons for
Ha, the hierarchical representation of Tab and the basic Sig
classifiers, getting 63%.

6. Conclusions
Tests were conducted using boosting to learn three types of
linguistic sub-unit, which are then combined with a simple
second stage classifier to learn word level signs. By bas-
ing the sub-units on the linguistic taxonomy there is greater
scope for using data and priors from the linguistic domain
as well as using the sub-unit classifiers to aid in data an-
notation. However, this data set is few in repetitions, with
only 4 per sign for training the viseme level classifiers. This
means that there are not always enough examples to fully
separate each viseme type and more information than just

Combination Ha HaM HaM HaM
TabH Tab TabH TabH
Sig Sig SigC Sig

Mean 35.7% 60.6% 55.5% 63.0%
Minimum 33.9% 57.7% 52.7% 61.2%
Maximum 36.6% 62.4% 57.1% 65.1%
Std Dev 0.8 1.6 1.4 1.3

Table 4: Classification performance using sub-unit level
classifiers, combined together by a basic Markov Model
LUT, trained on five examples. Ha uses binary compar-
isons between values, whereas HaM uses the magnitude of
the difference between values. Tab does not use the hier-
archical structure of this sub-unit class, TabH includes this
structure. SigC uses the component based labels whereas
Sig use the standard labels.

the viseme might be encoded by the classifier. It is also
lacking in the number of signs it contains, having only 164
signs, which is insufficient to fully represent all the visemes
for which classifiers should be learnt. However, there is
currently no other publicly-available data set, which has
sub-unit labelling at the temporal level, with which to bet-
ter train the classifiers. It is for this reason that future work
should investigate other sources of data whilst continuing
to use a sub-sign representation allowing large lexicons to
be tackled effectively.
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