
Project	Note	AP04-2015-01	

i	
	

Documentation	of	the	Feedback-
System	and	its	Integration	into	iLex	
Text:	 	 	 Sven	Berding	

Graphics:	 	 Sven	Berding,	Thomas	Hanke	

Release	History:	 Sven	Berding,	2015-02-10	(2.0.2)		

	 	 	 2015-03-31:	fixes	some	typos,	minor	updates	(Thomas	Hanke)	

	 	

Project	Note	AP04-2015-01	

ii	
	

	

Table	of	contents	
	

1.	 Background	..	1	

2.	 Disambiguation	and	a	first	look	at	the	application	..	1	

3.	 About	this	documentation	...	6	

4.	 Installation	and	configuration	of	Feedback	...	6	

4.1	SSL	Configuration	..	7	

4.2	Folder	structure	and	deployment	...	12	

4.2.1	APP-Folder	..	12	

4.2.2	Data	Folder	...	12	

4.2.3	Folder	permissions	...	14	

4.2.4	Deployment	of	new	content	..	14	

4.3	Video	/	Streaming	...	14	

4.3.1	Xuggler	...	14	

4.3.2	Organization	of	streams	...	15	

5.	 The	Application	Concept	..	18	

5.1	Mapping	of	users,	roles	and	questionnaires	including	the	score	concept	18	

5.2	Random	component	in	a	questionnaire	..	19	

5.3	Personal	questionnaires	/	packidges	...	20	

6.	Creating	users	and	roles	..	23	

6.1	Different	types	of	users	...	23	

6.2	Create	users	and	roles	...	23	

7.	Basic	structure	of	questionnaires	..	27	

7.1	Structure	of	a	packidge	/	XML	DOM	template	..	27	

7.2	Structure	of	a	single	page	as	insert	for	$pages	in	7.1	...	28	

7.3	Combining	the	components	for	the	Feedback	system	..	28	

7.4	Structuring	contents	(Pages	&	rows	as	content	of	a	questionnaire)	...	29	

7.4.1	Pages	..	29	

7.4.2	Content–Blocks	and	rows	...	30	

7.5	Jumping	on	the	next	page	/	line	/	conditional	sub-answers	...	31	

8.	Creation	of	questionnaires	..	31	

8.1	Preparation	...	31	

8.2	Example	design	(Form	und	Bedeutung	Package)	..	31	

8.3	Metadata	related	questionnaires	(Additional	features	by	examples	/	Regular	Expressions	I)	...	45	

8.3.1	packidge.CHANGE_PROFILE.xml	(User	profile	change)	..	45	

8.3.2	packidge.	PROFILE.xml	(User	profile	–	Personal	data)	...	51	

Project	Note	AP04-2015-01	

iii	
	

8.3.3	packidge.REGISTRATION_PROFILE.xml	(User	profile	–	Registration)	52	

8.4	Additional	Features	/	Regular	Expressions	II	...	53	

8.4.1	INPUT-packidge	..	53	

8.4.2	Validation	of	lists,	scale	questions	etc.	...	54	

9.	Answered	questionnaires	as	results	...	56	

10.	Help	pages	...	60	

11.	Validation	of	text	fields	...	61	

12.	Loose	coupling	between	Feedback	and	iLex	...	63	

12.1	Feedback	Database	Tables	..	63	

12.2	Results	...	67	

12.3	State	Transitions	..	68	

13.	The	XSL	Tranformation	Process	...	71	

13.1	Example	XSL	..	71	

13.2	Generation	of	SQL	statements	for	iLex	...	73	

14.	Feedback	Configuration	Data	..	75	

14.1	Package	Templates	..	76	

14.2	Page	Templates	...	80	

14.3	Row	Templates	..	83	

14.4	Static	Templates	..	87	

14.5	feedback_configurations	DB-Table	...	89	

15.	Feedback	Configuration	Classes	..	90	

16.	Feedback	Proto	Bundles	..	91	

17.	Feedback-Assets	..	93	

18.	Further	database	tables	for	parameters	...	95	

19.	iLex	and	Feedback	users	and	groups	...	97	

19.1	Mapping	of	groups	..	98	

19.2	Registration	Procedures	..	101	

20.	Representation	of	Feedback	XML	Constructs	in	iLex	..	102	

20.1	–	Example	of	packidge	75	..	104	

20.2	Bundling	questions	as	a	package	...	108	

21.	Return	of	questionnaires	..	109	

22.	Representation	of	results	from	a	type	point-of-view	..	112	

Project	Note	AP04-2015-01	

1	
	

1. Background	

In	 order	 to	 explore	 the	 active	 and	 passive	 treasurey	 of	 words	 of	 German	 Sign	 Language	 (DGS),	 a	
crowd-sourcing	project	has	been	initiated	to	complement	and	verify	corpus	data	of	DGS.	
Besides	an	active	word	pool	that	is	well-known	by	the	community	a	huge	passive	treasury	of	words	
does	 exist	 which	 is	 characterized	 by	 non-documented	 signs,	 sign	 language	 dialects	 and	 colloquial	
language.	
These	 low-frequency	 signs	 and	 linguistic	 phenomena	 are	 not	 explored	 sufficiently.	 Supplementary	
methods	 are	 needed	 to	 complement	 and	 verify	 available	 corpus	 data	 in	 the	 process	 of	 dictionary	
compilation.	 One	 central	 descision	 of	 the	 project	 was	 to	 use	 methods	 of	 crowd	 sourcing	 and	
community	 sourcing	 in	 order	 to	 verify	 and	 to	 complement	 corpus	 data	 and	 supplementary	
information	on	signs	and	sign	uses.	Two	different	strategies	were	combined	to	get	members	of	the	
language	community	involved.	One	strategy	was	to	choose	a	focus	group	while	the	second	strategy	
was	to	be	targeted	on	the	evaluation	of	the	data	pool	by	online	feedback.		
The	 focus	 group	 approach	 had	 been	 successfully	 applied	 in	 various	 dictionary	 projects	 before	 and	
being	a	form	of	community	sourcing	it	was	considered	a	suitable	instrument	in	the	project	context.	In	
this	 case	 qualified	 community	members	 committed	 themselves	 to	 the	 project	 for	 a	 longer	 period	
thus	 providing	 continuity	 and	 high	 quality	 of	 work.	 In	 our	 case,	 the	 focus	 group	 consisted	 of	 10	
signers	with	high	 language	 awareness	 and	 some	metalinguistic	 knowledge.	 They	discussed	 specific	
questions	on	the	use	of	signs	that	came	up	in	the	dictionary	compilation	process	and	that	cannot	be	
answered	on	the	basis	of	available	corpus	data.	This	was	put	into	practice	by	means	of	introspection	
and	filmed	group	discussions,	resulting	in	mostly	qualitative	data.	
In	order	to	involve	the	language	community	as	a	whole	(crowd	sourcing)	an	online	feedback	platform	
is	 now	 available	 which	 is	 in	 focus	 of	 this	 technical	 documentation	 for	 administrators.	 The	 online	
feedback	platform	is	a	web	application	that	enables	members	of	the	language	community	to	answer	
questions	on	 signs,	 their	 variants,	 and	 senses.	Results	provide	evidence	 for	 regional	distribution	of	
signs	and	sign	meanings.	The	answers	are	analysed	quantitatively	and	provide	information	that	will	
complement	 and	 verify	 data	 from	 the	 corpus	 and	 other	 sources.	 As	 with	 any	 crowd	 sourcing	
approach	 addressing	 a	 rather	 small	 community,	 the	 crucial	 point	 for	 the	 Feedback	 platform	 is	 not	
only	how	to	attract	enough	first-time	users,	but	also	how	to	make	users	check	back	regularly.	
In	order	to	achieve	this	objective,	a	gamification	approach	has	been	implemented	by	using	computer	
game	elements	such	as	high-scores	and	expert	levels	that	combines	well	with	the	target	community’s	
pride	of	their	own	language	and	their	support	of	the	project.	
The	feature	that	 is	unique	to	this	system	compared	to	the	many	online	survey	tools	available	 is	 its	
sign	language	rootedness:	Not	only	does	the	system	address	the	user	in	sign	language,	but	the	user	
can	provide	answers	to	open	questions	in	sign	as	well.	
This	technical	documentation	gives	a	profound	insight	into	the	Online-Feedback	web	application,	its	
installation	 into	 the	 Tomcat	 servlet	 container1,	 configuration	 issues	 as	 well	 as	 the	 creation	 of	
questionnaires	and	the	exploration	of	results.	

2. Disambiguation	and	a	first	look	at	the	application	

This	chapter	gives	a	brief	overview	on	how	the	GUI	of	the	Feedback	web	application	 looks	 like	and	
the	appearance	of	questions	 in	 a	questionnaire	 in	 general.	 The	 concepts	of	 the	application	will	 be	
discussed	 in	 the	 following	 chapters	 in	 detail.	 In	 order	 to	 get	 quick	 access	 to	 the	 contents	 of	 this	
documentation,	it	seems	appropriate	to	present	the	“core”	to	the	reader	for	a	start.	A	questionnaire	
is	a	bundle	of	different	questions	in	the	sign	language	context.	

																																																													
1	http://tomcat.apache.org	

Project	Note	AP04-2015-01	

2	
	

Disambiguation	
Before	 this	 documentation	 carries	 on,	 it	 is	 important	 to	 know	why	 the	 term	 “packidge”	 has	 been	
selected	 for	 internal	 use	 in	 favour	 of	 “package”.	 In	 fact,	 what	 we	 consider	 here	 is	 a	 bundle	 of	
questions	that	have	been	organized	 in	a	certain	way	 in	order	to	make	computational	processing	of	
the	 answers	 as	 easy	 as	 possible	 and	 to	 present	 questions	 to	 users	 appropriately.	 But	 since	 DGS-
Feedback	is	a	web-application	that	is	based	on	the	Java2	programming	language	it	is	not	possible	to	
call	a	package	simply	“package”	inside	of	Feedback.	This	is	because	the	term	“package”	is	a	reserved	
keyword	in	Java,	so	it	is	forbidden	to	use	the	term	inside	the	source	code	in	another	context	than	to	
declare	a	'name	space'	for	a	Java	class.	It	has	to	be	put	at	the	top	of	the	Java	file	and	it	should	be	the	
first	Java	statement	line.	
In	consequence	a	new	term	had	to	be	found	in	order	to	describe	the	bundled	request	construct.	The	
“packidge”	term	was	chosen	because	it	semantically	reminds	of	the	original	package	term	and	does	
not	cross	any	Java	language	specification.	
Each	single	question	of	a	so-called	packidge	(package,	cf.	chapter	7)	 is	presented	to	the	user	 in	the	
web	browser	as	follows:	

	
Figure	1:	Presentation	of	a	sign	

																																																													
2	http://www.java.com	

Project	Note	AP04-2015-01	

3	
	

Depending	on	the	type	of	a	questionnaire	different	kinds	of	questions	are	presented	to	the	user	 in	
the	upper	window	part	such	as	“Do	you	know	this	sign?”	(Form	an	meaning	bundle).	Each	question	in	
the	upper	part	of	the	GUI	refers	to	a	video	or	text	contribution	that	is	visible	in	the	bottom	window	
part.	
Questions	on	signs	for	example	refer	to	videos	and	texts	presented	in	the	following	screenshots.	
	

	
Figure	2:	Money	-	Medium	of	exchange	

Each	sign	is	presented	in	the	left	GUI	part	whereas	the	textual	meaning	of	the	current	sign	is	shown	
on	the	right.	The	user	has	to	select	her/his	answer	by	the	buttons	in	the	middle	part.	There	will	be	a	
lot	 of	 examples	 and	 discussions	 on	 that	 topic	 in	 the	 progress	 of	 the	 current	 documentation.	 The	
purpose	now	is	just	to	give	you	a	feeling	on	how	the	general	GUI	look	and	feel	is.		
For	 example,	 the	 hand-symbol	 means:	 This	 here	 is	 the	 sign	 which	 I	 usually	 use.	 The	 eye-symbol	
means:	I	know	this	sign	but	I	usually	do	not	use	it	myself	but	I’ve	seen	others	using	it.	The	striked-eye	
symbol	means:	I	don’t	know	this	sign.	
As	the	following	screen	makes	clear	it	is	also	possible	to	present	some	annotations	on	the	given	sign.	
The	annotations	are	given	in	the	video	on	the	very	right	position	of	the	window.	Since	one	single	sign	
can	have	different	readings	this	is	an	appropriate	way	to	add	some	details	on	the	context.	
	

	
Figure	3:	Currency	-	Euro,	Dollar	

Project	Note	AP04-2015-01	

4	
	

Referring	 to	 figure	 1	we	 can	 see	 that	 there	 is	 a	 down	button	 in	 the	GUI	which	 allows	 the	 user	 to	
navigate	 from	one	presented	 reading	of	 a	 sign	 to	 the	next	while	 staying	on	 the	 same	page	of	 the	
bundle.	The	subsequent	page	whereas	can	be	accessed	by	clicking	the	“Weiter”	button	in	the	upper	
part	of	the	GUI.	The	next	page	will	present	a	different	sign	and	its	readings.		
The	 questionnaires	 generally	 contain	 questions	 on	 signs	 and	 its	 readings,	 meanings	 and	 regional	
distribution.	A	further	type	refers	to	handedness.	As	we	will	see	later	on	there	are	also	bundles	that	
handle	the	metadata	information	of	a	user	(i.e.	master	file	data	etc.).		
In	the	present	example	some	questions	on	a	sign	are	posed.	The	process	is	as	follows.	At	first	the	sign	
is	presented	to	the	user	without	 lip	movement.	 If	 the	user	does	not	know	the	sign	the	next	sign	 is	
presented	–	again	without	lip	movement	whereas	if	the	user	knows	the	sign	further	questions	on	the	
different	meanings	of	the	sign	are	asked.	The	contextual	meanings	of	the	sign	are	requested	with	the	
corresponding	lip	movement	at	this	time	(i.e.	"money"	and	"currency").	
Often	there	are	 little	differences	 in	the	hand	shape	 like	“knife“	with	one	finger	or	“knife“	with	two	
fingers.	This	does	not	mean	the	same	 in	context	of	 the	application.	On	finishing	one	page	the	user	
has	the	opportunity	to	add	even	more	meanings	by	text	or	video.	

Handedness	
This	type	of	questionnaire	 is	about	which	hand	 is	 the	preferred	siging	hand.	For	the	appearance	of	
such	questionnaire	packages,	please	take	a	look	at	the	following	screen.	
	

	
Figure	4:	Questionnaire	on	handedness	

Project	Note	AP04-2015-01	

5	
	

This	request	makes	use	of	a	scale	for	the	answering	process.	Scale	questions	are	covered	in	chapter	
8.4.2.	
Regarding	the	content	of	a	packidge	we	can	identify	some	other	questionnaire	types	but	the	handling	
for	 the	web	 application	 and	 by	 the	 user	 is	 the	 same	 as	 already	 described.	 For	 example	 there	 are	
further	 packages	 on	 regional	 differences	 of	 a	 sign.	 As	 you	 will	 become	 aware	 in	 chapter	 8.3	
(metadata	related	questionnaires)	master	file	data	is	requested	by	questionnaires	as	well.	
If	a	user	has	finished	answering	a	bundle	she/he	is	able	to	commit	the	whole	packidge	by	clicking	the	
button	on	the	middle-right	in	the	next	screenshot.	

	
Figure	5:	Commit	screen	

Project	Note	AP04-2015-01	

6	
	

3. About	this	documentation	

Online-Feedback	 represents	 a	 questionnaire-system	 implemented	 as	 a	 Java	 web-application.	 The	
application	makes	use	of	 the	Google	Web	Toolkit3.	GWT	 itself	 is	a	development	toolkit	 for	building	
and	 optimizing	 complex	 browser-based	 applications.	 Being	 an	 open	 source	 set	 of	 tools	 web	
developers	are	able	to	create	and	maintain	complex	JavaScript	front-end	applications	in	Java.	
This	 is	 how	 Online-Feedback	 provides	 individual	 graphical	 user	 interfaces	 (GUI)	 for	 PC,	 Mac	 and	
mobile	devices.	Since	the	GWT	renders	the	browser-based	user	interface	differently	for	every	mobile	
target	device	a	responsive	design	could	be	implemented.	
In	 addition	 to	 a	mouse-based	 navigation	 (click)	Online-Feedback	 gives	 the	 user	 the	 opportunity	 to	
comment	signs	by	text	and	video.		
The	Online	Questionnaire	System	can	be	integrated	with	the	iLex4	transcription	environment	that	is	
to	say	there	is	only	a	 loose	coupling	between	the	systems	on	file	system	level.	 iLex	fetches	 its	data	
from	the	file	system	of	the	Feedback	application	and	evaluates	the	XML	data	with	the	help	of	XSLT.	
Since	the	data	 is	transmitted	 in	this	manner,	no	data	remains	 in	the	Feedback	file	system	after	the	
process.	 This	 is	 extremely	 important	 for	 the	 sake	 of	 data	 security	 since	 the	 Tomcat	 file	 system	 is	
exposed	to	the	internet	as	is	the	nature	of	a	web	server.	
With	regard	to	the	administration	of	Feedback	users,	a	role	mapping	strategy	has	been	implemented	
between	 the	 two	 systems.	 There	 are	 the	 internal	 user	 groups	 for	 the	 Feedback	 application	 (roles)	
while	 iLex	keeps	 its	own	user	concept	differing	 in	 functionality.	The	n:1	mapping	between	 iLex	and	
Feedback	groups	will	be	part	of	chapter	19.1.	
This	documentation	gives	information	about	the	following	essential	questions:	

• How	to	perform	the	configuration	for	the	Feedback-App	in	Apache	Tomcat	
• How	to	produce	content	for	Feedback	/	Creation	of	questionnaires	
• Where	to	find	and	how	to	evaluate	the	results	of	the	answering	process	
• Integration	of	Feedback	into	iLex	
• Handling	of	Feedback	artefacts	inside	of	iLex	

For	a	general	overview	on	the	iLex	transcription	environment	please	take	a	look	at	the	iLex	wiki5.	

4. Installation	and	configuration	of	Feedback	
Since	the	application	runs	in	context	of	sensitive	personal	data,	the	aspect	of	data	security	is	highly	
prioritized.	Therefore	it	is	extremely	important	that	iLex	fetches	the	data	from	the	Tomcat	file	system	
in	a	way	that	no	personal	data	remains	after	the	process	in	the	file	system	source	that	is	exposed	to	
the	internet.	Video	files	have	to	be	processed	over	https	for	security	reasons.	
Since	Tomcat	 itself	does	not	 take	care	of	 the	video	streams,	 there	needs	 to	be	a	 second,	 separate	
https	server	available	 in	the	setup	that	provides	the	video	data	which	is	referenced	in	the	system’s	
xml	 files.	The	video	data	 should	be	available	multiple-resolution	and	multi-format	 (such	as	mp4	or	
webm)	 in	 order	 to	make	 a	 responsive	 presentation	 for	 different	 devices	 possible.	 As	 discussed	 in	
chapter	4.3.2,	an	m3u8	playlist	file	organizes	the	metadata	in	the	application	context.	
An	administrator	has	to	be	aware	of	the	type	and	quantity	of	the	target	systems	in	order	to	provide	
appropriate	multimedia	files.	
iLex	fetches	the	video	files	referenced	in	the	result	packidge	in	the	result	packidge	(answers	to	open	
questions	as	well	as	comments)	from	the	Tomcat	user’s	directory,	renders	it	into	the	mp4	format	for	
further	 processing	 and	 finally	 deletes	 the	 source	 file	 from	 the	 user’s	 directory	 as	 this	 is	 person-
related	data	too.	

																																																													
3	http://www.gwtproject.org/overview.html	
4	http://www.sign-lang.uni-hamburg.de/ilex	
5	https://wiki.sign-lang.uni-hamburg.de/groups/ilex/	

Project	Note	AP04-2015-01	

7	
	

Since	 Feedback	 is	 a	 Java	 based	 web-application,	 the	 program	 files	 are	 deployed	 in	 the	 Apache	
Tomcat	servlet	container.	Tomcat	acts	as	a	Java	specific	runtime	environment	for	the	application.	In	
order	 to	get	 the	application	 to	work	after	an	 install	 from	scratch,	 some	additional	 technical	details	
have	to	be	considered.	
The	following	parts	of	this	documentation	give	 information	about	how	to	configure	Tomcat	for	the	
Feedback-App	generally,	which	directories	have	 to	be	 readable	and	writeable,	how	 to	address	 this	
when	creating	new	users	and	how	to	enable	Tomcat‘s	SSL/HTTPS	features.	

4.1	SSL	Configuration	
In	 order	 to	make	 a	 proper	 configuration	 of	 Tomcat’s	 SSL	 features	 you	 have	 to	 be	 aware	 of	 some	
crucial	 points	 such	 as	 certificates	 and	 keystores.	 As	 a	 prerequisite	 you	 have	 to	 have	 a	 JDK6	 (Java	
Development	Kit)	installed.	In	this	context	everything	is	Java	based	since	we	are	using	a	Tomcat	Web	
Server.	
When	Tomcat	needs	some	SSL-Information	about	its	deployed	websites	it	will	have	a	look	at	its	own	
keystore.	This	is	the	place	where	Tomcat	stores	all	its	SSL-Information.	The	keystore	itself	is	only	a	file	
with	the	extension	“.keystore“,	“.p12“	or	similar.	
When	the	browser	navigates	to	an	https	address,	it	not	only	looks	for	a	SSL	certificate	but	also	checks	
if	the	certificate	can	be	trusted.	If	the	certificate	does	not	originate	from	a	CA	(Certification	Authority	
–	 such	 as	 VeriSign	 or	 GoDaddy	 etc.)	 that	 the	 browser	 trusts	 in,	 the	 browser	 will	 give	 a	 warning	
message	such	as	the	following:	
	

	
Figure	6:	Not	trusted	connection	(Mozilla	Firefox)	

SSL	Certificate	Overview	
The	initial	creation	of	certificates	is	described	by	the	next	figure.	

	
Figure	7:	SSL	Processing	in	Tomcat	

																																																													
6	http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html	

Project	Note	AP04-2015-01	

8	
	

Tomcat’s	SSL-Processing	 is	described	according	to	the	figure	above.	 In	a	second	step	we	will	utilize	
Java’s	Keytool	to	produce	the	initial	files.	
1.	–	Creation	of	keystore	
Tomcat’s	default	keystore	already	contains	a	self-signed	certificate	on	creation.	This	is	OK	for	testing	
setups,	but	not	for	production	purposes.	
2.	–	Creation	of	a	Certificate	Signing	Request	(C.S.R.)	
The	CSR	is	a	low	encryption	key	that	the	CA	will	require	in	order	to	generate	the	real	SSL-Certificates	
intended	for	production	use.	The	CSR	itself	can	be	created	on	any	machine	with	a	JDK.	The	CSR	is	a	
text	file.	
Copy	and	paste	the	CSR	key	where	the	CA	wants	you	to	for	purchasing	your	certificate.	In	academic	
contexts,	computing	centres	often	act	as	CAs	as	well.	
3.	–	CA	(Certificate	Authority)	generates	the	certificate	and	delivers	the	files	
CAs	are	reputable	companies	you	can	trust.	Examples:	VeriSign7,	GoDaddy8	etc.	Academic	CAs	often	
act	as	sub-CAs	of	such	companies.	
4.	–	The	certificate	comes	in	a	bundle	of	1	–	3	files	containing	ROOT	CERT	an	the	real	SSL	CERT	
	

	
Figure	8:	Step	4	–	Import	certificate	into	the	Tomcat	keystore	

5.	-	Modify	/	Configure	server.xml	
Tomcat’s	server.xml	is	its	central	configuration	file.	Located	in	the	/conf	folder	it	contains	connector	
declarations	that	can	be	adapted	in	order	to	use	the	keystore.	
In	order	to	generate	the	files	in	the	above-mentioned	process	you	have	to	follow	the	following	step	
by	step	guide.	
	
1.	–	Create	Tomcat	keystore	in	%CATALINA_HOME%\conf	with	this	single	command	
%JAVA_HOME%\bin\keytool	 -genkey	 –alias	 tomcat	 –keyalg	 RSA	 -keystore	
%CATALINA_HOME%\conf\my.keystore	
	

	
Figure	9:	keytool	query	

																																																													
7	http://www.verisign.com	
8	https://de.godaddy.com	

Project	Note	AP04-2015-01	

9	
	

By	using	keytool	from	the	command	line	you	will	be	prompted	to	insert	some	additional	information	
for	the	keystore	as	shown	in	the	figure	above.	The	password	as	shown	on	top	in	Fig.	9	(above)	is	for	
the	 keystore.	 The	 password	 in	 the	 bottom	 line	 of	 Fig.	 9	 refers	 to	 the	 standard	 self-signed	 Tomcat	
certificate.	
Btw.:	The	localhost	entry	has	to	be	replaced	by	the	correct	URL.	
2.	–	Create	aCSR	
%JAVA_HOME%\bin\keytool	 -certreq	 -keyalg	 RSA	 -alias	 tomcat	 -file	
%CATALINA_HOME%\conf\certreq.csr	-keystore	%CATALINA_HOME%\conf\my.keystore	
We	only	have	to	enter	the	keystore	password	in	the	command	line	during	this	process.	
	

	
Figure	10:	CSR	Example	-	Textfile	

3.	–	Request	the	SSL	certificate	at	the	CA	and	use	the	CSR	created	in	step	2	
This	process	differs	from	organization	to	organization.	
4	–	Import	Root	and	SSL	certificates	(chain	certificates)	
keytool -import -alias root -keystore %CATALINA_HOME%\conf\my.keystore -trustcacerts -file
<filename_of_the_root_certificate_full path)>

keytool -import -alias tomcat -keystore %CATALINA_HOME%\conf\my.keystore -file
<filename_of_the_SSL_certificate_full path)>

5	–	Change	connectors	configuration	in	server.xml	
This	illustrates	the	basic	Feedback	server	configuration	file	using	a	PKCS12	keystore	which	is	decribed	
in	the	following	section.	
	
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
 keystoreFile="conf/feedback.p12"
 keystoreType="PKCS12"
 keystorePass="passphrase"
 sslProtocol="TLS"
/>
Listing	1:	Connector	–	server.xml	

Project	Note	AP04-2015-01	

10	
	

PKCS12	Keystore	
Tomcat	currently	operates	only	on	JKS,	PKCS11	or	PKCS12	format	keystores.	The	JKS	format	is	Java's	
standard	 "Java	KeyStore"	 format	 and	 is	 the	 format	 created	by	 the	 keytool	 command-line	utility	 as	
shown	in	the	previous	section.	This	tool	is	included	in	the	JDK	as	mentioned.	The	PKCS12	format	is	an	
internet	standard	and	can	be	manipulated	via	(among	other	things)	OpenSSL9	for	example.		
Each	entry	in	a	keystore	is	identified	by	an	alias	string.	Whilst	many	keystore	implementations	treat	
aliases	 in	 a	 case	 insensitive	 manner,	 case	 sensitive	 implementations	 are	 available.	 The	 PKCS11	
specification,	for	example,	requires	that	aliases	are	case	sensitive.	To	avoid	issues	related	to	the	case	
sensitivity	of	aliases,	it	is	not	recommended	to	use	aliases	that	differ	only	in	case.		
To	import	an	existing	certificate	into	a	JKS	keystore,	please	use	the	aforementioned	way	with	the	JDK	
keytool.	Please	note	that	OpenSSL	often	adds	readable	comments	before	the	key,	but	keytool	does	
not	 support	 that.	 So	 if	 your	 certificate	 has	 comments	 before	 the	 key	 data,	 remove	 them	 before	
importing	the	certificate	with	keytool.		
To	import	an	existing	certificate	signed	by	your	own	CA	into	a	PKCS12	keystore	(like	Feedback	uses	in	
this	case)	using	OpenSSL	you	would	execute	a	command	like:	
openssl pkcs12 -export -in mycert.crt -inkey mykey.key -out mycert.p12 -name tomcat -CAfile

myCA.crt -caname root -chain

Tomcat	can	use	two	different	implementations	of	SSL:		
• the	JSSE	implementation	provided	as	part	of	the	Java	runtime	(since	1.4)	
• the	APR	implementation,	which	uses	the	OpenSSL	engine	by	default.	(Used	in	the	UHH	DGS	

Feedback	configuration)	
The	exact	configuration	details	depend	on	which	 implementation	 is	being	used.	 If	you	configured	a	
connector	 by	 specifying	 generic	 protocol="HTTP/1.1"	 then	 the	 implementation	 used	 by	 Tomcat	 is	
chosen	automatically.	In	the	case	of	DGS-Feedback	in	the	UHH	setup	the	APR	configuration	is	used.	
As	you	can	see	 in	the	following	figure	the	feedback.p12	PCKS12	keystore	file	 is	 located	 in	Tomcat’s	
/conf	folder	together	with	the	server.xml	file.	
	

	
Figure	11:	Conf-Folder	

																																																													
9	https://www.openssl.org	

Project	Note	AP04-2015-01	

11	
	

The	server.xml	makes	use	of	the	feedback.p12	keystore	in	its	configuration	as	shown	in	the	following	
listing.	
As	 you	 can	 see	 the	 APR	 configuration	 is	 used	 so	 the	 AprLifecycleListener	 has	 set	 its	 SSLEngine-
Attribute	to	„on“	in	Line	4	of	the	following	XML	excerpt.	
	

	
Listing	2:	server.xml	

The	configuration	settings	of	the	SSL-Connector	can	be	seen	in	listing	2	above.	To	make	use	of	SSL	we	
have	 to	 enable	 the	 connector	 for	 port	 8443	 and	 set	 SSLEnabled=“true“	 as	 well	 as	
secure=“true“.	
The	 keystore	 configuration	 is	 managed	 by	 the	 entries	 keystoreFile,	 keystoreType	 and	
keystorePass.	The	sslProtocol	has	been	set	to	TLS.	
Below	you	can	see	the	non	SSL	configuration	in	the	server.xml.	If	you	like	to	use	SSL	only	in	your	web-
application	please	comment	this	section	out.	

	
Listing	3:	server.xml	(http	only	connector)	

Project	Note	AP04-2015-01	

12	
	

4.2	Folder	structure	and	deployment	
In	 the	 “webapps”	 directory	 of	 the	 Tomcat	 server	 there	 are	 two	 separate	 folders	 deployed	 for	 the	
Feedback-System.	These	two	folders	have	some	different	purposes.	This	means	there	is	

- one	folder	for	the	application	itself	(APP-Folder)	
./webapps/KorpusFeedbacksystem	

- one	folder	for	the	data	of	the	Feedback	System	(DATA-Folder)	
./webapps/feedback/KorpusFeedbacksystem	

4.2.1	APP-Folder	

- Contains	the	application-logic	of	the	GWT	app	
- Binding	 to	 the	 Feedback-Datastorage	 is	 carried	 out	 by	 ./WEB-INF/classes/	

KorpusFeedbacksystem.properties	
The	 „root-dir“	 is	 here	 set	 to	 /webapps/feedback/KorpusFeedbacksystem	 (XML-Data	
Storage)	the	data	keeping	area	of	the	Feedback	App	
If	the	path	configuration	should	differ	in	your	setup	you	have	to	adapt	the	paths	at	this	point	

- /WEB-INF/lib	!jars	
In	 this	 folder	 you	 can	 find	 some	 additional	 libraries	 that	 the	 Feedback	 platform	 uses	 in	 order	 to	
dissolve	the	Java	dependencies	of	the	application	(classic	deployment	of	external	libs)	

- /WEB-INF/classes		
This	folder	contains	the	individual	programmed	files	from	the	developers	of	Feedback	
(classic	deployment	of	compiled	java	bytecode)	

- The	initial	URL	by	which	the	Feedback	application	is	available	is	mapped	to	the	welcome	file	
./webapp/Korpusfeedbacksystem/KorpusFeedbacksystem.html	

Mappings	i.e.	for	this	start	page	can	be	changed	in	the	web.xml	file	(welcome-file-list).	
The	 web.xml	 is	 called	 deployment	 descriptor	 and	 provides	 the	 opportunity	 of	 configuring	 more	
parameters	such	as	upload/download	mappings,	login	configurations	etc.	

- Contains	the	image	icons	for	the	frontend	

4.2.2	Data	Folder	

The	folder	structure	for	the	application	data	is	shown	as	follows	

/packidge	
Contains	all	packidges	for	all	usergroups	
The	structure	and	purpose	of	these	packidge	files	will	be	content	of	the	following	chapters.	Basically,	
packidges	 are	 questionnaires	 encoded	 as	 XML	 data.	 These	 questionnaires	 are	 consumed	 by	 the	
Feedback	system	and	processed	together	with	the	user	answers.	This	documentation	is	also	a	guide	
on	how	to	create	new	questionnaires	and	how	to	deal	with	the	resulting	XML	in	the	corresponding	
USER-Folders.	

/role	
Different	users	can	act	in	different	roles	such	as	administrators,	employees,	focus-users	or	standard-
users.	
In	this	directory	you	can	find	metadata	related	questionnaires	for	registration,	user	profile	change	or	
personal	data.	These	are	stored	in	the	role	folder	so	that	the	profiles	can	be	defined	in	dependency	
of	the	roles	(i.e.	in	different	languages).		
There	are	also	naming	conventions	for	the	different	roles	in	the	application.	Please	take	a	look	at	the	
following	excerpt	for	more	details.		
There	are	two	pre-defined	roles	in	the	system:	

• /role/ROLE_admin/	
• /role/ROLE_standard/	

Each	of	these	role	directories	contain	all	of	the	system	packages	such	as	
	

Project	Note	AP04-2015-01	

13	
	

categories.xml		
!	Packidge-Reference:	Which	packidges	are	assigned	to	the	certain	user	role/group.	
The	categories	also	contain	 the	minimum	score	values	that	have	to	be	achieved	by	the	user	 to	get	
access	to	the	questionnaires	of	the	certain	category,	individual	assignments	to	certain	packidges	for	
the	group,	weights	etc.	See	chapter	5.2	for	more	details	on	the	application	concept.	
The	assignments	of	packidges	to	user	groups	are	carried	out	dependent	on	the	achieved	user-score.	
	
help.xml	
!Determines	 which	 help	 information	 has	 to	 be	 available	 for	 the	 members	 of	 this	 group.	 In	 the	
system	file	"help.xml"	all	help	videos	and	texts	are	contained	which	are	defined	for	the	certain	user	
group	 (role).	 The	 order	 of	 the	 items	 is	 significant	 here.	 The	 default	 sequence	 can	 be	 overwritten	
directly	 in	 the	 system	 package	 questionnaires	 (chapters	 5.1	 &	 5.2).	 It	 is	 possible	 to	 arrange	 help	
videos	 for	 each	 questionnaire	 packidges	 individually.	 The	 administrator	 is	 able	 to	 define	 which	
video/helpsequence	 is	 shown	 on	 top	 etc.	 There	 will	 be	 more	 detailed	 information	 on	 metadata	
related	questionnaires	in	the	following	chapters.	
	
packidge.CHANGE_PROFILE.xml		
!	Change	profile	questionnaire	(package)	for	all	users	in	one	group	
!Cf.	chapter	8.3.1	
	
packidge.PROFILE.xml	
!	Personal	data	for	pre-registered	users		
!	Cf.	chapter	8.3.2	
	
packidge.REGISTRATION_PROFILE.xml		
!	User	profile	registration	questionnaire	
!	Only	for	standard-users:	Data	from	registration	process/social	data	
	

/user	
The	user	folder	contains	data	that	can	be	assigned	directly	to	the	user.	The	files	in	the	user	directory	
are	diverse.	Starting	from	system	xml	data	consumed	by	the	Feedback	system	in	order	to	handle	the	
user	as	a	system	entity,	up	to	multimedia	data	from	individual	comments	(video,	jpg)	and	answered	
questionnaires	containing	all	the	important	feedback-result-information	for	iLex.	
Have	a	look	at	the	following	figure	for	an	example	user	directory	view.	
	

	
Figure	12:	Directory	view	-	USER_Sven.Berding.Test	

Project	Note	AP04-2015-01	

14	
	

Among	the	files	in	the	figure	above	you	can	find	the	following	initial	system	files	to	be	consumed	by	
the	application:		 	

Default	system	files	
user-config.xml,	user-id.xml,	user-status.xml,	user-trace.xml	
	
Not	 all	 of	 the	 aforementioned	 files	 have	 to	 be	 issued	 by	 the	 administrator	 herself/himself	 when	
creating	a	user	by	hand.	(cf.	chapter	6.2).	
Furthermore	there	are	video	COMMENT	files	available	(.webm)	including	a	preview	image	for	each	of	
the	video	comment	streams.	These	comments	can	be:	

• Questionnaire	comments	
• CHANGE-PROFILE	COMMENTS	
• Commit	page	comments	

The	file	formats	we	are	dealing	with	here	are	JPG	(for	the	preview	images)	,	MP4	and	WEBM	videos.	
The	deposition	of	 change	 requests	 for	 the	user	profile	are	also	carried	out	by	xml	 files.	The	whole	
application	is	package-based.	Under	the	hood	these	change	xml	request	files	are	nothing	else	than	a	
result	of	a	metadata	related	questionnaire.	For	details	on	questionnaire	results	see	chapter	9.	
The	 answered	 questionnaire	 files	 (as	 xml)	 here	 are	 intended	 for	 the	 iLex	 evaluation	 via	 XSLT.	 iLex	
itself	 catches	 the	data	 from	 the	 file	 system	here	 and	 cuts	 the	 files	 from	 the	Tomcat	 file	 system	 in	
order	 to	 ingest	 the	 packages	 into	 its	 database.	 It	 is	 also	 possible	 that	 users	 fill	 out	 questionnaires	
partially.	The	partial	 information	is	stored	here	in	the	corresponding	packidge	file	as	well.	 iLex	does	
not	 touch	 partially	 answered	 packidges	 until	 the	 global	 „status“	 attribute	 has	 been	 set	 to	
“committed”.		

4.2.3	Folder	permissions	

Since	the	application	stores	the	resulting	xml	data	and	some	additional	resources	in	the	specific	user	
folder	it	has	to	have	WRITE	permissions	on	that	directory.	Only	READ	permissions	are	necessary	for	
the	 role	 and	 packidge	 directory.	 The	 latter	 two	 are	 only	 accessed	 to	 read	 data	 consumed	 by	 the	
application	itself.	

4.2.4	Deployment	of	new	content	

In	order	to	deploy	new	content	to	the	running	system	we	have	to	make	sure	that	it	is	not	necessary	
to	restart	Tomcat.	Furthermore	an	administrator	has	to	deploy	the	content	in	the	right	order	to	not	
disturb	 the	 running	 system.	 For	 example,	 newly	 deployed	 packidges	 have	 to	 be	 available	 in	 the	
packidge	directory	before	 they	are	 referenced	by	 role	or	user	configuration	 files.	 It	has	 to	be	clear	
which	directories	 an	administrator	does	 control	alone	and	which	directory	 the	admin	has	 to	 share	
with	Tomcat.	

4.3	Video	/	Streaming	
The	Feedback	application	utilizes	“xuggler”10	which	is	a	free	open-source	library	for	Java	developers	
that	can	be	used	to	uncompress,	manipulate,	and	compress	recorded	or	live	videos	in	real	time.	
This	 chapter	 gives	 only	 a	 short	 overview	 on	 the	 video	 streaming	 handling	 of	 the	 Feedback	
application.	

4.3.1	Xuggler	

	“Xuggler”	 uses	 the	 very	 powerful	 FFmpeg	 media	 handling	 libraries	 under	 the	 hood,	 essentially	
playing	 the	 role	of	 a	 java	wrapper	around	 them.	 It	 is	an	easy	way	 to	uncompress,	modify,	 and	 re-
compress	any	media	file	(or	stream)	from	Java.	

																																																													
10	www.xuggle.com/xuggler	

Project	Note	AP04-2015-01	

15	
	

FFmpeg11	 is	 a	 complete,	 cross-platform	 solution	 to	 record,	 convert	 and	 stream	 audio	 and	 video,	
supporting	numerous	formats.	However,	Xuggler’s	use	is	not	limited	to	just	providing	an	easy	access	
to	the	complex	FFmpeg	native	libraries.		
The	 xuggler	 libraries	 are	 located	 in	 Feedback’s	 .\webapps\feedback\KorpusFeedbacksystem\lib	
directory	which	is	part	of	Feedbacks	data	folder	structure.	

4.3.2	Organization	of	streams	

The	 videos	 of	 the	 feedback	 system	 are	 integrated	 into	 the	 questionnaire	 packages	 (both	 content	
related	and	metadata	related).	As	we	can	see	 in	the	snippet	below	there	are	two	alternative	video	
files	 offered	 by	 the	 system.	 Depending	 on	 the	 browser	 settings	 and	 codecs	 of	 the	 target	 system	
either	a	.mp4	file	or	a	.webm	file	is	used	for	streaming.		
	

	
Listing	4:	Position	of	video	links	in	the	page	content	of	a	packidge	

																																																													
11	https://www.ffmpeg.org	

Project	Note	AP04-2015-01	

16	
	

These	files	are	organized	by	an	m3u8	Playlist	which	provides	metadata	information	for	the	streaming	
process	such	as	resolution,	codecs,	bandwidth	etc.	
The	following	listing	refers	to	the	video	streams	in	the	“welcome	tutorial	page”	in	the	example	listing	
above.	This	is	how	the	metadata	is	provided	for	productional	use.	
	
#EXTM3U	
#EXT-X-STREAM-INF:BANDWIDTH=790122,CODECS="avc1.640029",RESOLUTION=960x720	
./tutorial_willkommen_1/prog_index.m3u8	
#EXT-X-I-FRAME-STREAM-
INF:BANDWIDTH=36679,CODECS="avc1.640029",RESOLUTION=960x720,URI="./tutorial_willkommen
_1/iframe_index.m3u8"	
#EXT-X-STREAM-INF:BANDWIDTH=508730,CODECS="avc1.640029",RESOLUTION=720x540	
./tutorial_willkommen_2/prog_index.m3u8	
#EXT-X-I-FRAME-STREAM-
INF:BANDWIDTH=27570,CODECS="avc1.640029",RESOLUTION=720x540,URI="./tutorial_willkommen
_2/iframe_index.m3u8"	
#EXT-X-STREAM-INF:BANDWIDTH=415744,CODECS="avc1.640029",RESOLUTION=640x480	
./tutorial_willkommen_3/prog_index.m3u8	
#EXT-X-I-FRAME-STREAM-
INF:BANDWIDTH=22295,CODECS="avc1.640029",RESOLUTION=640x480,URI="./tutorial_willkommen
_3/iframe_index.m3u8"	
#EXT-X-STREAM-INF:BANDWIDTH=272528,CODECS="avc1.640029",RESOLUTION=480x360	
./tutorial_willkommen_4/prog_index.m3u8	
#EXT-X-I-FRAME-STREAM-
INF:BANDWIDTH=15795,CODECS="avc1.640029",RESOLUTION=480x360,URI="./tutorial_willkommen
_4/iframe_index.m3u8"	
#EXT-X-STREAM-INF:BANDWIDTH=164073,CODECS="avc1.4d401f",RESOLUTION=360x270	
./tutorial_willkommen_5/prog_index.m3u8	
#EXT-X-I-FRAME-STREAM-
INF:BANDWIDTH=9963,CODECS="avc1.4d401f",RESOLUTION=360x270,URI="./tutorial_willkommen_
5/iframe_index.m3u8"	
#EXT-X-STREAM-INF:BANDWIDTH=162058,CODECS="avc1.42c01e",RESOLUTION=360x270	
./tutorial_willkommen_6/prog_index.m3u8	
#EXT-X-I-FRAME-STREAM-
INF:BANDWIDTH=9043,CODECS="avc1.42c01e",RESOLUTION=360x270,URI="./tutorial_willkommen_
6/iframe_index.m3u8"	
	
#EXT-X-STREAM-INF:BANDWIDTH=91372,CODECS="avc1.42c01e",RESOLUTION=240x180	
./tutorial_willkommen_7/prog_index.m3u8	
#EXT-X-I-FRAME-STREAM-
INF:BANDWIDTH=4974,CODECS="avc1.42c01e",RESOLUTION=240x180,URI="./tutorial_willkommen
_7/iframe_index.m3u8"	
	
#EXT-X-STREAM-INF:BANDWIDTH=36800,CODECS="avc1.42c01e",RESOLUTION=120x90	
./tutorial_willkommen_8/prog_index.m3u8	
#EXT-X-I-FRAME-STREAM-
INF:BANDWIDTH=1319,CODECS="avc1.42c01e",RESOLUTION=120x90,URI="./tutorial_willkommen_8
/iframe_index.m3u8"	
Listing	5:	tutorial_willkommen.m3u8	playlist	

Project	Note	AP04-2015-01	

17	
	

	
The	playlist	defines	different	parameters	for	different	resolutions	and	runtime	environments	such	as	
PCs	 with	 large	 displays	 or	 mobile	 devices	 with	 only	 small	 screens.	 As	 you	 can	 see	 above	 some	
additional	.m3u8	metadata	can	be	nested	inside	of	one	global	playlist.	
	
./tutorial_willkommen_7/prog_index.m3u8
#EXTM3U
#EXT-X-TARGETDURATION:20
#EXT-X-VERSION:4
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-PLAYLIST-TYPE:VOD
#EXTINF:20.00000,
#EXT-X-BYTERANGE:226540@0
a.ts
#EXTINF:6.32000,
#EXT-X-BYTERANGE:74072@226540
a.ts
#EXT-X-ENDLIST
Listing	6:	prog_index.m3u8	

For	example,	the	iframe	index	file	in	the	next	listing	is	referenced	in	that	way	by	the	top	level	m3u8-
playlist.	The	iframe	index	data	is	used	for	fast	forward/rewind	of	video	sequences.	
	
tutorial_willkommen_7/iframe_index.m3u8
#EXTM3U
#EXT-X-TARGETDURATION:10
#EXT-X-VERSION:4
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-PLAYLIST-TYPE:VOD
#EXT-X-I-FRAMES-ONLY
#EXTINF:10.00000,
#EXT-X-BYTERANGE:6204@376
a.ts
#EXTINF:10.00000,
#EXT-X-BYTERANGE:7520@213004
a.ts
#EXTINF:5.88000,
#EXT-X-BYTERANGE:7708@410780
a.ts
#EXT-X-ENDLIST
Listing	7:	iframe	index	file	

Project	Note	AP04-2015-01	

18	
	

5. The	Application	Concept	
The	user	didactical	concept	of	the	feedback	application	is	based	on	a	gamification	approach	in	order	
to	increase	the	user’s	motivation.	The	goal	is	to	keep	the	user‘s	commitment	and	the	willingness	to	
check	back	to	the	system	regularly	in	order	to	answer	more	questionnaires.	
The	 application	 differenciates	 between	 multiple	 categories	 of	 questions	 such	 as	 for	 beginners,	
intermediates	 and	 expert	 level	 users.	 Depending	 on	 the	 user’s	 state	 there	 are	 different	
questionnaires	 accessible.	 A	 beginner	 level	 user	 for	 instance	 is	 not	 allowed	 to	 access	 expert	 level	
questionnaires	and	so	on.	While	the	user’s	group	membership	does	not	change	at	all	with	additional	
gained	scores	the	user’s	status	will	change	with	efford	and	therefore	a	higher	level	score.		
The	following	chart	shows	the	integration	of	this	user	concept	inside	the	feedback	app.	
	

	
Figure	13:	Integration	of	the	user	concept	

5.1	Mapping	of	users,	roles	and	questionnaires	including	the	score	concept	
As	shown	in	the	figure	above	one	user	is	associated	with	a	role	by	the	user-config.xml	file.	The	role	
attribute	of	the	user-config	tag	is	set	to	the	role	name	(here:	standard).	
	
<?xml version="1.0" encoding="UTF-8"?>
<user-config id="sven.berding.testConfig" role="standard" profile="true">
<name>vorname.nachname.standard</name>
<password>passwordUSERID</password>
</user-config>
Listing	8:	user-config.xml	

Project	Note	AP04-2015-01	

19	
	

Inside	the	group/role	 itself	the	file	“categories.xml“	determines	which	questionnaires	the	members	
are	allowed	to	view	and	which	score	 is	nescessary	to	access	different	categories	of	questionnaires.	
(<minscore>).	
The	attribute	„score“	contains	the	score	a	user	can	achieve	through	a	fully	answered	questionnaire.	
	
<?xml version="1.0" encoding="UTF-8" ?>
<categories>
 <category id="category4">
 <name>A</name>
 <minscore>5</minscore>
 <packidge-ref id="86" weight="100" score="15" />
 </category>
 <category id="category5">
 <name>B</name>
 <minscore>20</minscore>
 <packidge-ref id="73" weight="100" score="25" />
 <packidge-ref id="74" weight="100" score="23" />
 <packidge-ref id="75" weight="100" score="24" />
 <packidge-ref id="76" weight="100" score="26" />
 <packidge-ref id="77" weight="100" score="21" />
 <packidge-ref id="79" weight="100" score="21" />
 <packidge-ref id="80" weight="100" score="22" />
 <packidge-ref id="81" weight="100" score="24" />
 <packidge-ref id="90" weight="100" score="24" />
 <packidge-ref id="91" weight="100" score="22" />
 </category>
 <category id="category6">
 <name>C</name>
 <minscore>200</minscore>
 <packidge-ref id="94" weight="100" score="10" />
 <packidge-ref id="99" weight="100" score="13" />
 </category>
 <category id="category22">
 <name>D</name>
 <minscore>2000</minscore>
 </category>
</categories>
Listing	9:	categories.xml	

Please	note:	There	is	also	a	score	attribute	inside	a	questionnaire	xml	packidge.	The	score	in	this	file	
can	be	overwritten	inside	the	above-mentioned	“category.xml”	file.	

5.2	Random	component	in	a	questionnaire	
If	there	are	only	a	few	answered	questionnaires	of	one	kind	available	in	the	results	the	administrator	
is	able	to	make	an	intervention	on	which	packidges	of	questionnaires	of	a	category	is	represented	to	
a	user	with	which	priority	level.	
This	is	carried	out	by	the	weight	attribute	in	the	categories.xml	or	in	the	packidge	file	itself.	
By	the	weight	attribute	administrators	are	able	to	control	which	packidge	gets	a	higher	propability	to	
be	the	next	one	that	 is	represented	to	the	user.	This	way	concurrency	between	different	packidges	
can	be	driven.	
This	 is	how	an	administrator	has	control	over	the	components	so	that	she/he	can	determine	which	
contents	 to	present	 in	a	certain	moment	 to	a	certain	user.	The	 first	way	 to	 take	 this	control	 is	 the	
already	discussed	“weight”	parameter.	The	second	 is	 the	“score”	attribute	parameter	that	also	has	
already	been	refered	to	in	this	chapter.	
These	two	parameters	have	in	common,	that	they	are	defined	in	a	package	and	can	be	overwritten	in	
the	categories.xml	file	for	a	group	or	in	the	user-category.xml	file	(user	folder)	for	a	certain	user	if	a	
personal	packidge	is	supposed	to	be	referenced	(see	chapter	5.3).	
The	reference	to	a	certain	packidge	 is	 implemented	by	the	<packidge-ref>	xml	tag.	The	 id	attribute	
matches	with	a	questionnaire	with	the	corresponding	id.		
The	 status	 of	 a	 user	 is	 implemented	 in	 xml	 as	 well.	 As	 soon	 as	 a	 user	 has	 completed	 a	 packidge	
(which	 does	 not	 nescessarily	 has	 to	 be	 a	 content	 related	 questionnaire	 but	 also	 a	 change	 profile	
packidge	 for	 instace)	 an	 entry	 inside	 of	 the	 user-status.xml	 is	made.	 The	 user-staus.xml	 is	 located	

Project	Note	AP04-2015-01	

20	
	

inside	the	user’s	personal	folder.	As	you	can	see	above	the	user	scores	are	summarized	inside	the	file	
in	order	to	determine	the	user’s	current	total	score	which	is	nothing	else	than	the	user	status	itself.	
As	 you	 can	 also	 see	 above,	 completing	metadata	 related	questionnaires	 does	not	 result	 in	 further	
scores	(CHANGE_PROFILE	packidge	score	=	0).	
But	 this	 is	also	configurable	 if	desired.	The	packidges	 „registration“,	 „collection	of	 social	data“	and	
„change	 of	 social	 data“	 contain	 their	 scores	 directly	 inside	 their	 xml.	 If	 you	want	 to	 give	 the	 user	
points	 for	 handling	 these	 packidges	 the	 scores	 have	 to	 be	 configured	 directly	 in	 their	 own	 xml	 or	
have	to	be	overwritten	in	“categories.xml”	or	“user-categories.xml”	in	case	of	personal	packidges.	
The	standard	value	of	weight	and	score	is	0,	if	one	attribute	is	missing.	

5.3	Personal	questionnaires	/	packidges	
As	mentioned	earlier	an	administrator	has	the	opportunity	to	map	certain	questionnaires	to	certain	
groups	 /	 roles.	The	users	being	members	of	a	group	 then	will	have	access	 to	all	 these	pre-defined	
packidges.	
But	 administrators	 are	 also	 able	 to	 map	 the	 questionnaire	 items	 directly	 to	 one	 user	 without	
considering	a	specific	role	that	is	to	say	a	specific	group	membership.	In	this	case	the	user	is	directly	
associated	with	 a	 packidge.xml	 by	 the	 “user-categories.xml”	 file.	 This	 file	 has	 to	 reside	 inside	 the	
user’s	specific	directory.	
This	 feature	 has	 been	 implemented	 in	 order	 to	 become	 able	 to	make	 further	 specific	 inquiries	 to	
users	while	referring	to	a	special	questionnaire.	In	that	way	the	inquiries	can	be	easily	targeted	to	a	
certain	user	and	questionnaire	combination.	
As	discussed	the	only	technical	difference	an	administrator	has	to	be	aware	of	is	that	the	reference	
to	a	package	is	made	in	the	user’s	own	folder	here	and	not	in	the	role	folder.	
The	packidge-reference	is	located	as	a	separate	file	inside	of	the	user	directory.	
	
<?xml version="1.0" encoding="UTF-8" ?>
<user-category id='myCategory'>
 <packidge-ref id='MP000001' weight='100' score='21'/>
</user-category>
Listing	10:	user-category.xml	

A	further	example:	
	
<?xml version="1.0" encoding="UTF-8"?>
<user-category id="Für mich">
 <packidge-ref id="84" weight="100" score="6" />
 <packidge-ref id="084" weight="100" score="6" />
</user-category>
Listing	11:	user-category.xml	

Project	Note	AP04-2015-01	

21	
	

The	 screenshot	 below	 shows	 an	 unlocked	 category	 for	 a	 user	 in	 the	 the	 web	 GUI	 frontend.	 An	
unloked	category	 item	is	clickable	and	therefore	accessible	for	a	user	due	to	the	<minscore>	tag	 in	
category.xml.	
	

	
Figure	14:	Categories	in	the	GUI	

As	mentioned	before	the	user	status	is	summarized	in	a	central	xml	file	called	“user-status.xml”.	The	
summarized	score	becomes	visible	in	the	frontent	GUI	as	shown	below.	

	
Figure	15:	Highscore	list	after	completing	packidge74.xml	

After	exeedance	of	the	minscore	barrier,	a	new	category	becomes	available	and	unlocked.	

	
Figure	16:	Category	B	becomes	unlocked	after	Cat.	A	

Since	 category	B	 contains	multiple	packidges	 in	 this	example	 there	 is	no	access	 to	a	next	 category	
after	 completing	 the	 initial	 questionnaire.	 the	 24-points-questionnaire	 in	 fig.	 16	 and	 the	 21-point-
questionnaire	below	in	fig.	17.	Both	are	in	the	context	of	the	same	category.	
	

	
Figure	17:	21-points-questionnaire	/	still	category	B	

Project	Note	AP04-2015-01	

22	
	

Figure	 18	 resumes	 the	 score/status	 concept	 of	 the	 Feedback	 application.	 The	 aforementioned	
concept	becomes	visually	integrated	by	this	overview	in	the	web	GUI.	

	
Figure	18:	Score	and	status	concept	

Project	Note	AP04-2015-01	

23	
	

As	a	part	of	 the	application	concept	the	missing	points	 to	achieve	a	new	category	are	 listed	 in	 this	
screen	 and	 therefore	 reflect	 the	 entities	 and	 concepts	 presented	 in	 the	 xml	 dialect	 during	 this	
chapter.	

6.	Creating	users	and	roles	

There	are	different	user	types	available	in	the	feedback	system.	Users	can	act	in	the	standard	role	by	
the	default	registration	process	from	the	Feedback	website.	In	this	case	the	user	does	not	have	to	be	
created	 manually	 by	 the	 IT	 staff.	 In	 case	 of	 other	 users	 than	 in	 the	 standard	 role	 such	 as	
administrators	or	iLex	users	it	might	be	necessary	to	create	them	from	scratch	manually.		

6.1	Different	types	of	users	
Technically,	the	only	user	role	in	need	for	the	system	is	the	standard	user.	This	kind	of	user	is	added	
to	the	system	by	the	default	registration	process	in	the	web	frontend.	It	is	also	the	only	type	of	user	
that	 has	 a	 “REGISTRATION_PROFILE.xml”	 file	 in	 its	 user	 directory	 after	 registration.	 This	 profile	
information	is	 intended	for	 ingestion	into	the	iLex	database,	and	since	every	new	registered	user	 is	
mapped	 automatically	 to	 the	 standard	 role	 the	 REGISTRATION_PROFILE	 is	 uniquely	 present	 in	 the	
standard	user	folders.	
A	 special	 role	 is	 intended	 for	 the	 admin	 user.	 In	 order	 to	 enable	 an	 administrator	 to	 test	 a	 new	
installation	of	the	application	it	is	necessary	that	packidges	are	never	stored	in	the	system.	Otherwise	
packidges	would	be	only	available	for	one	single	answering	process	of	the	administrator.	This	role	is	
furthermore	the	only	way	to	reference	certain	packidges	by	parameter	directly	from	the	browser	URL	
such	 as	 “https://meinedgs.sign-lang.uni-hamburg.de:8443/KorpusFeedbacksystem/?packidge=92”	
for	 example.	Users	not	of	 the	 status	of	 an	 administrator	 are	not	 able	 to	use	URL	parameters.	 The	
parameters	will	be	skipped	in	this	case.	

6.2	Create	users	and	roles	

Users	
User	and	roles	can	be	created	manually	in	addition	to	the	default	user	registration	process.	
The	only	 file	 you	need	 to	 create	 a	 user	 in	 the	 file	 system	 from	 scratch	 is	 the	 “user-config.xml”.	 In	
contrast,	the	“user-trace.xml”	is	created	automatically	by	the	system	after	the	first	login	of	the	new	
user.	 The	 trace	 file	 contains	 the	 information	 of	 how	 far	 the	 user	 is	 progressed	 by	 answering	 a	
questionnaire.	If	an	answering	process	is	interrupted	the	system	itself	is	able	to	resume	the	process	
when	the	user	likes	to	continue	with	the	questionnaire.		
Stored	information:	which	packidge	file,	exact	position	in	the	corresponding	packidge.	
The	file	“user-id.xml”	has	also	not	to	be	created	manually	because	the	file	is	only	present	in	the	case	
that	the	data	sets	originating	from	iLex.	
In	case	of	personal	packidges	 the	administrator	has	 to	create	a	“user-category.xml”	 file	 in	 the	way	
described.	
If	you	like	to	create	Feedback-Users	manually	you	have	to	follow	these	following	steps.	
Navigate	to	

\webapps\feedback\KorpusFeedbacksystem		
and	you	will	find	the	following	folder	structure	
	

	
Figure	19:	Basic	data	directory	

Project	Note	AP04-2015-01	

24	
	

Navigate	to	the	user	directory.	Here	you	have	to	create	a	new	directory	for	the	new	user.	
Please	use	the	following	name	convention	for	the	folder:	USER_firstname.lastname.rolename	
	

	
Figure	20:	Initially	created	xml	data	inside	the	user	folder	

Now	 you	 have	 to	manually	 create	 two	 files	 (in	 case	 of	 users	 originating	 from	 iLex).	 One	 is	 “user-
config.xml”.	
	
Create	the	“user-config.xml”	according	to	the	following	template	

	
Listing	12:	user-config.xml	

In	case	of	a	user	originating	from	iLex	the	second	file	you	have	to	initially	create	is	“user-id.xml”.	
The	initial	password	is	a	string	combined	with	the	USER	ID	integer	value.	After	the	first	 login	of	the	
user	 the	 password	 becomes	 RSA	 encrypted/hashed.	 Passwords	 of	 standard	 users	 are	 hashed	
immediately	on	registration.	
The	“user-id.xml”	is	also	used	for	the	password	recovery	process	in	case	a	user	requests	a	new	one.	
Thereby	the	hashed	password	will	be	replaced	by	a	clear	text	string.	

	
Listing	13:	user-id.xml	

The	integer	value	in	the	listing	above	is	a	simple	user	id	such	as	an	integer	value	of	90.	
This	is	the	initial	content	for	the	“user-status.xml”	(empty	tag).	This	file	does	not	have	to	be	created	
by	administrators	manually.	As	we	have	already	discussed	the	status	of	a	user	is	implemented	in	xml	
as	well.	As	soon	as	a	user	has	completed	a	packidge	(which	does	not	nescessarily	has	to	be	a	content	
related	 questionnaire	 but	 also	 a	 change	 profile	 packidge	 for	 instace)	 an	 entry	 inside	 of	 the	 “user-
status.xml”	is	made.	The	user	scores	are	summarized	inside	the	file	in	order	to	determine	the	user’s	
current	total	score	which	is	nothing	else	than	the	user	status	itself.	
	

	
Listing	14:	user-status.xml	

The	“user-trace.xml”	will	be	created	automatically	by	the	application	after	the	first	login	of	a	user.	It	
stores	 information	 about	 the	 answering	 process	 of	 questionnaires	 in	 order	 to	 resume	 aborted	
processes	and	to	locate	the	point	where	a	user	stopped	answering	a	packidge.	
	

	
Listing	15:	user-trace.xml	

Project	Note	AP04-2015-01	

25	
	

Roles	
Roles	can	be	created	in	the	file	system	according	to	the	same	paradigm	utilized	with	user	creation.	
The	naming	convention	as	described	by	“ROLE_rolename”	has	to	be	kept.	Since	the	role	name	itself	
follows	an	underscore	token	(_)	the	role	name	can	be	easily	referenced	from	the	system	xml.	
If	 you	 also	 want	 to	 create	 new	 roles	 for	 the	 system	 users	 you	 have	 to	 add	 a	 folder	 to	 the	 role	
directory.	
	

	
Figure	21:	ROLE	directory	folder	structure	

The	 naming	 of	 the	 role	 directories	 follow	 the	 naming	 convention	 ROLE_rolename	 and	 do	 initially	
contain	two	files.	
	

	
Figure	22:	Initial	content	of	the	role	directory	

As	we	have	seen	before,	 the	 file	“categories.xml”	has	 to	be	configured	as	decribed	 in	 the	previous	
chapter.		
	

	
Listing	16:	categories.xml	

Project	Note	AP04-2015-01	

26	
	

Please	note:	
The	 scores	 inside	 the	 “categories.xml”	 overwrite	 the	 scores	 inside	 the	 questionnaire	 packidges.	
Questionnaires	are	linked	here	too	in	the	way	already	decribed	in	chapter	4.2.2.	
	

Creation	of	help	files	for	a	new	role/group	
As	you	can	see	in	the	listing	below	the	help.xml	file	consists	of	one	or	many	content	blocks.	
	

	
Listing	17:	content	blocks	in	the	help	file	

Each	content	block	contains	a	sructure	according	to	the	xml	excerpt	below.	
	

	
Listing	18:	content	block	structure	

Project	Note	AP04-2015-01	

27	
	

The	single	content	items	can	be	selectively	integrated	inside	the	packidges	(both	content-related	and	
metadata-related)	by	the	<help>	tag.	

7.	Basic	structure	of	questionnaires	

General	 note:	 As	 already	 discussed	 in	 chapter	 2	 the	 term	 “packidge”	 instead	 of	 “package”	 is	
continuously	used	in	the	whole	application	and	therefore	in	this	present	documentation.	The	reason	
for	 using	 the	 packidge-term	 is	 that	 the	 application	 is	 java-based.	 Since	 “package”	 is	 a	 reserved	
keyword	in	Java	it	is	not	possible	to	use	the	term	in	another	context	as	well.	
There	are	basically	two	different	types	of	questionnaires	

1. Content-Related	Questionnaires	
2. Metadata-Related	Questionnaires	

Content-Related	Questionnaires	
The	content-related	questionnaires	as	considered	in	chapter	8	are	automatically	generated	from	the	
iLex	 transcription	environment.	They	 represent	 the	 core	 type	of	questionnaires	 containing	project-
relevant	 questions	 on	 signs	 and	 sign	 uses.	 The	 basic	 structure	 and	 layout	 of	 questionnaires	 is	
explained	by	content-related-	questionnaires-examples	in	the	current	chapter	for	this	type	being	the	
most	commonly	used,	too.	

Distinction	of	content	related	questionnaires	
This	distinction	 is	not	of	 technical	nature	but	of	organizational	 character.	 There	are	 three	 types	of	
questionnaires.	

Type	1:	Form	and	meaning	of	signs	
Type	2a:		The	spectrum	of	possible	characteristics	based	on	a	meaning	of	a	sign		
Type	2b:	Same	as	2a	plus	a	grouping	of	signs	in	case	there	are	so	many	meanings	to	a	special	
sign	that	the	signs	have	to	be	organized	once	more.	

Metadata-Related	Questionnaires	
The	metadata-related	 questionnaires	 do	 not	 deal	with	 sign	 contents.	 Instead,	 they	 handle	 profile-	
and	 registration	master	 file	 data.	 Since	 the	 whole	 data	 handling	 and	 persistence	 structure	 of	 the	
application	 is	 based	 on	 a	 file	 system	 store	 paradigm	 every	 change	 in	 the	 user	 data	 has	 to	 be	
communicated	 to	 the	 iLex	 database	 by	 an	 xml	 package	 file.	 In	 order	 to	 meet	 this	 objective	 it	 is	
necessary	to	map	the	process	of	changing	the	user’s	metadata	on	the	questionnaire	approach.		
This	 becomes	 obvious	 by	 regarding	 the	metadata-related	 questionnaires	 in	 chapter	 8.3.	 These	 are	
stored	 in	 the	 role	 folder	 so	 that	 the	 profiles	 can	 be	 defined	 in	 dependency	 of	 the	 roles	 (i.e.	 in	
different	languages).	

packidge.	PROFILE.xml	(User	profile	–	personal	data)	
packidge.CHANGE_PROFILE.xml	(User	profile	–	change)	
packidge.REGISTRATION_PROFILE.xml	(User	profile	–	registration	

A	 third	 type	 of	 questionnaires	 is	 represented	 by	 the	 INPUT-packidge	 and	 packidge	 M0000012	
(Validation	 of	 lists,	 scale	 questions	 etc.).	 These	 are	 hand-made	 during	 the	 testing	 process	 of	 the	
application	 and	 are	 available	 for	 administration	 purposes.	 By	means	 of	 these	 files	 it	 is	 possible	 to	
present	 some	 additional	 features	 that	 can	 be	 implemented	 into	 the	 feedback	 questionnaires	 in	
general	such	as	additional	types	of	questions	containing	text-verification	models	(REGEX).	Compare	
to	chapter	8.4.	

7.1	Structure	of	a	packidge	/	XML	DOM	template	
Each	 questionnaire	 packidge	 follows	 this	 basic	 template	 structure.	 This	 structure	 becomes	 refined	
step	by	step	in	the	progress	of	this	documentation.	
	
<packidge id="$id" score="$score" weight="$weight">

Project	Note	AP04-2015-01	

28	
	

 <topic>Package</topic>
 <name>$name</name>
 Welcome
 Task
 (if applicable: further pages which occur in every package of this type)
 $pages (1…n)
 (if applicable: further pages which occur in every package of this type)
 commit-page
 revise-page
 retract-page
 help
</packidge>
Listing	19:	Packidge	structure	skeleton	

7.2	Structure	of	a	single	page	as	insert	for	$pages	in	7.1	
The	 $pages-construct	 in	 chapter	 7.1	 can	 be	 replaced	 modularly	 by	 the	 following	 page-structure-

skeleton.	

<page id="$id" index="$pagenumber" topic="$name">
 comment
 Frage/Oberste Zeile jeder Inhaltsseite
 $rows
 (ggf. letzte Zeile einer Seite, die auf jeder Inhaltsseite vorkommt)
</page>
Listing	20:	Page	structure	skeleton	

7.3	Combining	the	components	for	the	Feedback	system	
If	you	combine	the	packidge	element	above	with	the	corresponding	page	elements	this	will	result	in	
the	 following	 basic	 questionnaire	 structure	 that	 we	 will	 explore	 in	 the	 following	 steps.	 After	 an	
example	tutorial	 in	chapter	8.2	you	will	be	able	to	create	your	own	content	related	questionnaires	
for	Feedback.	
	

	
Listing	21:	Basic	questionnaire	structure	

Project	Note	AP04-2015-01	

29	
	

7.4	Structuring	contents	(Pages	&	rows	as	content	of	a	questionnaire)	
The	listing	above	only	represents	a	skeleton	for	a	questionnaire	consumed	by	the	application.	In	the	
next	step	each	page	has	to	be	filled	up	with	content.	

7.4.1	Pages	

Content	is	organized	in	each	page	of	a	packidge.		

	
Listing	22:	Simple	welcome	page	(topic=“willkommen“)	

Later	we	will	see	how	content	blocks	are	presented	to	the	user	in	the	frontend.		
The	page	construct	can	be	skimmed	through	by	clicking	the	„Weiter“	button	 in	a	questionnaire.	As	
we	can	see	here	the	page	above	is	followed	by	a	further	page	with	a	simple	identical	structure.	In	this	
case	the	next	page	contains	an	introductory	text	/	video.	
	

	
Listing	23:	Page	containing	an	introductory	text	/	video	

Project	Note	AP04-2015-01	

30	
	

7.4.2	Content–Blocks	and	rows	

Contents	are	structured	in	the	questionnaire.	That	is	to	say	one	can	prepare	the	contents	visually	for	
the	user	in	a	way	that	text	components	are	placed	besides	images	or	contents	are	placed	one	below	
the	other.	
Therefore	a	kind	of	container	for	contents	is	defined	which	is	exactly	the	mentioned	<content>	xml	
construct.	Inside	of	this	tag	we	can	place	our	Feedback	content	we	like	to	present	to	the	user.	
If	contents	are	supposed	to	be	faded	in	from	the	bottom	of	the	page	we	have	to	put	these	content-
containers	 (<content>)	 inside	 the	<row>	container	construct	 (Conditional	Sub-Questions).	Multiple	
<content>-elements	can	be	placed	inside	the	<row>	construct	in	order	to	place	them	parallel	in	one	
row	in	the	UI-Frontend.	All	that	becomes	more	clear	in	the	example	of	chapter	8.2.		
A	<row>	with	index=“1“	will	always	be	shown	directly	in	the	second	line	which	is	located	below	the	
header	line.	Compare	Fig.	23	below.	
This	row	with	index	1	acts	as	an	initial	start	point	for	further	rows	of	one	page.	The	rows	can	be	faded	
in	from	the	bottom	sequentially.	Comp.	Listing	24	below	and	the	Fig.	23	as	mentioned.	
	

	
Listing	24:	row	index=1	

<content>	as	well	as	<row>	are	part	of	a	single	<page>.	
Pages	have	indexes	as	well	so	that	the	system	is	aware	of	the	current	state	of	the	answering	process	
of	the	user	questionnaire.	
	

	
Figure	23:	Second	row	–	below	the	header	(row	index=“1“)	

Project	Note	AP04-2015-01	

31	
	

7.5	Jumping	on	the	next	page	/	line	/	conditional	sub-answers	
A	button	based	navigation	is	most	commonly	used	throughout	the	application	to	skim	on	next	pages	
or	rows.	We	will	se	this	in	action	later	on.	For	the	goto	attribute	there	are	valid	values	as	follows:	

• next-sub-page	!	Default	case:	go	to	next	page	
• exit-page	!	Jump	on	the	next	page	
• exit-packidge	!	Jump	out	of	the	packidge	=	Force	packidge	to	abort	
• <index>	!	Index	of	a	concrete	line	!	Lines	are	enumerated	for	that.	(starting	at	0);	

Jump	over	pages	
A	 page	 has	 to	 be	 viewed	 at	 least	 once.	 The	 attribute	 processed="true"	 in	 the	 page	 tag	 makes	 it	
possible	to	jump	over	pages	(i.e.	for	the	change	packidge).	This	documentation	addresses	this	topic	in	
chapter	8	(Answered	questionnaires	as	results).	

8.	Creation	of	questionnaires	

In	order	to	create	your	own	questionnaires	you	have	not	only	to	be	aware	of	the	basic	structure	of	
the	XML	DOM	of	a	packidge	file.	It	is	rather	important	to	know	how	changes	in	the	questionnaire	xml	
structure	are	reflected	directly	in	the	GUI.	
According	to	that	the	following	chapter	uses	screenshots,	xml	snippets	and	explanations	combined	in	
order	to	make	clear	how	changes	in	the	xml	cause	effects	in	the	web	GUI	in	detail.	This	is	carried	out	
by	an	example	of	a	content-related	questionnaire	as	this	is	the	most	commonly	used	xml	packidge	in	
the	application.	

8.1	Preparation	
In	order	to	create	your	own	questionnaires	 it	 is	a	good	 idea	to	use	a	text	editor	that	allows	you	to	
define	 a	 certain	 computer	 language	 for	 the	 current	 document.	 The	 great	 benefit	 is	 the	 syntax	
coloration	 feature	 which	 allows	 the	 editor	 to	 become	 exactly	 aware	 of	 the	 semantics	 of	 an	 xml	
document.		
The	XML-Editor	Notepad++12	is	an	exellent	freeware	tool	for	that	purpose.	There	are	some	language	
and	syntax	coloration	features	available.	With	the	XML-Tools-Extension	you	can	enable	a	pretty	print	
formatting	for	the	whole	document	as	well.	
Be	also	aware	to	check	the	validity	of	the	created	document	so	that	the	application	does	not	throw	
any	parsing	error	by	processing	the	xml.	

8.2	Example	design	(Form	und	Bedeutung	Package)	
In	this	chapter	a	questionnaire	implementation	for	packidge75	is	discussed	in	detail	in	order	to	show	
synchronisation	between	the	programmatic	aspects	in	the	file	itself	and	the	GUI	on	the	other	side.		
The	 xml	 file	 is	 part	 of	 the	 package	 “Form	 und	 Bedeutung“	 which	 also	 contais	 further	 xml	
questionnaires.	
As	 you	 can	 see	 in	 the	 listing	 below	 the	 membership	 of	 the	 questionnaire	 in	 the	 category	 B	 is	
determined	by	the	“categories.xml”	file.	
	

																																																													
12	http://notepad-plus-plus.org	

Project	Note	AP04-2015-01	

32	
	

<?xml version="1.0" encoding="UTF-8" ?>
<categories>
 <category id="category4">
 <name>A</name>
 <minscore>5</minscore>
 <packidge-ref id="86" weight="100" score="15" />
 </category>
 <category id="category5">
 <name>B</name>
 <minscore>20</minscore>
 <packidge-ref id="73" weight="100" score="25" />
 <packidge-ref id="74" weight="100" score="23" />
 <packidge-ref id="75" weight="100" score="24" />
 <packidge-ref id="76" weight="100" score="26" />
 <packidge-ref id="77" weight="100" score="21" />
 <packidge-ref id="79" weight="100" score="21" />
 <packidge-ref id="80" weight="100" score="22" />
 <packidge-ref id="81" weight="100" score="24" />
 <packidge-ref id="90" weight="100" score="24" />
 <packidge-ref id="91" weight="100" score="22" />
 </category>
 <category id="category6">
 <name>C</name>
 <minscore>200</minscore>
 <packidge-ref id="94" weight="100" score="10" />
 <packidge-ref id="99" weight="100" score="13" />
 </category>
 <category id="category22">
 <name>D</name>
 <minscore>2000</minscore>
 </category>
</categories>
Listing	25:	Membership	in	a	certain	category	

First	of	all	let’s	have	a	look	at	the	basic	hierarchical	structure	of	the	entire	file.	

	
Listing	26:	Hierarchical	structure	of	a	sample	packidge	

Project	Note	AP04-2015-01	

33	
	

As	you	can	see	there	are	some	attributes	inside	the	basic	tags	that	specify	the	questionnaire	handling	
for	the	system	itself.	The	attributes	are	 i.e.	page	 id,	 index	and	the	topic	string.	They	also	represent	
some	additional	information	for	the	latter	evaluation	in	iLex.	
Taking	a	look	at	the	first	screen	of	the	package	we	can	see	the	basic	structure	in	the	GUI.	In	the	upper	
part	we	can	find	the	initial	content	that	contains	a	video	in	.webm	or	.mp4	format.		
	
	

	
Figure	24:	Screen	1	|	Video	Frame	

In	order	 to	start	with	simple	content	and	 to	 finish	with	more	complex	structures	 let	us	 first	 take	a	
look	at	the	alternative	layout	for	the	screen.	
Here	 an	 alternative	 layout	 is	 shown.	 The	 text	 inside	 the	 video	 frame	 is	 an	equivalent	 to	 the	 video	
contents	in	the	screen	above.	

	
Figure	25:	Screen	1b	|	Text	inside	a	video	frame	

Project	Note	AP04-2015-01	

34	
	

In	 order	 to	 show	how	 this	 simple	 first	 screen	 corresponds	 to	 the	 xml	 content	 of	 the	 packidge	 file	
please	have	a	look	at	the	XML-Listing	below	(Listing	27)	which	is	exactly	the	same	content	as	shown	
in	the	screens	above	but	this	time	in	the	xml	dialect.	
As	you	can	see	this	is	the	page	with	index=0	-	in	this	case	the	welcome	page	-	that	does	not	contain	
any	content	in	the	bottom	part	of	the	browser	window.	
The	 basic	 structure	 shows	 that	 there	 is	 only	 one	 content	 block	 that	 contains	 the	 text	 and	 video	
information.	
First	of	all	the	initial	start	image	is	placed	in	the	content	block	as	jpg	file.	The	video	tag	contains	the	
aforementioned	playlist	that	refers	to	the	embedded	video	files	inside	the	<video>	tags.	Here	we	can	
see	 how	 the	 video	 in	 screen	 1	 and	 1b	 (figure	 24	 &	 25)	 is	 placed	 inside	 the	 xml	 content.	 Two	
alternative	video	files	are	available	depending	on	the	user’s	setup.	

	
Listing	27:	XML	for	Screen	1,	1b	

Referring	 to	 screen	 1b	 (figure	 25)	 we	 can	 see	 the	 text	 contents	 in	 the	 xml	 file	 between	 the	
<text></text>	 construct.	 If	 you	 like	 to	 place	 your	 own	 text	 content	 this	 is	 the	 right	 place	 for	 text	
strings.	
Since	this	 is	 the	 first	structure	to	be	described	here	you	have	to	be	aware	that	 this	one	 is	also	 the	
simplest	one.	Having	a	look	at	the	next	screen	we	will	find	some	more	complex	content	in	the	second	
step.	
In	screen	2	(figure	26)	there	is	no	content	in	the	bottom	of	the	page	as	well	but	as	we	can	see	there	
are	two	video	files	placed	side	by	side	in	the	header	area.	
	

	
Figure	26:	Screen	2	|	Two	video	files	in	the	header	area	

Project	Note	AP04-2015-01	

35	
	

Although	there	are	two	video	frames	placed	side	by	side,	they	can	be	easily	switched	to	text	mode	as	
we	can	see	here.	
	

	
Figure	27:	Screen	2	|	Text	mode	of	side	by	side	content	

Project	Note	AP04-2015-01	

36	
	

The	 corresponding	 xml	 snipped	 shows	 what	 has	 happened	 in	 the	 code	 here.	 While	 the	 basic	
structure	 remains	 the	 same	we	 can	 see	 that	 there	 are	 now	 two	 content	 blocks	 integrated	 in	 the	
structure.	This	causes	the	side	by	side	presentation	of	the	contents	in	the	GUI.	
	
	

	

	
Listing	28:	Screen	2	XML	/	2	content	blocks	(contents	are	presented	side	by	side	in	the	frontend)	

Project	Note	AP04-2015-01	

37	
	

Following	the	path	to	more	complexity	we	regard	the	third	screen	example	in	the	next	step.	This	 is	
the	first	time	that	there	 is	also	content	 in	the	bottom	area	of	the	browser	GUI.	This	 is	operated	by	
the	row	tag	in	the	xml	construct.	
	

	
Figure	28:	Screen	3	|	Row	content	at	the	bottom	

The	 index	 level	 of	 0	 is	 responsible	 for	 placing	 the	 content	 right	 beneath	 the	 header	 line	 of	 the	
browser	GUI	content.	Alternatively	it	is	still	possible	to	switch	to	text	mode	as	mentioned.	
In	the	header	area	of	the	page	the	content	 is	still	organized	as	decribed	by	the	content	tags.	There	
are	two	video/text	frames	side	by	side.	What’s	new	here	is	the	row	content	part	at	the	bottom	of	the	
following	listing.	
	

	
Listing	29:	Screen	3	XML	|	Row	content	

Project	Note	AP04-2015-01	

38	
	

The	 row	 content	 contains	 the	 information	 shown	 at	 the	 screen	 bottom	 as	 described.	 The	 buttons	
inside	the	row	are	integrated	inside	the	video	frame	itself.	Do	not	mix	it	up	with	the	buttons	labeled	
with	„Weiter“.	These	are	not	here	in	the	row	tag!	
By	clicking	the	„Runter“	button	in	the	GUI,	new	row	content	becomes	available.	This	is	faded	in	from	
the	bottom.	 Please	be	 aware	 that	we	 are	 still	 on	 the	 same	page	 (<page>)	when	new	 row	 content	
becomes	scrolled	in	as	you	can	see	in	the	next	screen.	
	

	
Figure	29:	Screen	3	row	index=2	|	New	row	content	

Please	note	that	the	row	index	is	now	not	zero	anymore.	This	(zero)	is	only	for	the	initial	row	content.	
The	index	increases	with	new	rows	that	become	available.	Also	note	that	we	have	one	more	content	
area	 in	the	row	here.	There	 is	a	video	and	a	text	 frame	side	by	side	 inside	the	row	content.	This	 is	
achieved	in	the	same	way	as	already	decribed	by	the	page	header	area	content.		
Considering	the	button	tags	we	are	able	to	provide	each	button	with	a	special	image	icon.	
	

	
Listing	30:	2	Content	areas	inside	of	the	row	|	Side	by	side	content	

Project	Note	AP04-2015-01	

39	
	

This	 is	 specified	 by	 the	 icon	 attribute	 and	 the	 values	 SIGN_USED,	 SIGN_KNOWN	 and	
SIGN_UNKNOWN.	 Each	 button	 has	 to	 get	 a	 unique	 id	 according	 to	 the	 id	 naming	 convention	
ROW_ID-BUTTON_INDEX_STARTING_AT_0	(i.e.	4067-0).		
At	the	end	of	a	page	that	contains	multiple	rows	the	user	is	asked	for	some	additional	meanings	of	a	
sign.	 The	 user	 has	 the	 opportunity	 either	 not	 to	 answer	 at	 all	 or	 to	 answer	 by	 text	 or	 video	 as	
presented	in	the	next	Fig.	30.	
	

	
Figure	30:	Screen	3	index	99	/	further	meanings	of	a	sign	

The	special	content	row	at	the	bottom	is	specified	by	the	special	index	of	99.		
By	having	a	more	detailed	look	at	the	following	code	we	can	see	that	there	is	one	further	special	row	
corresponding	to	the	construct	of	row	index	=	99.	
	

	
Listing	31:	ROW	XML	and	finished	page	tag</page>	

Project	Note	AP04-2015-01	

40	
	

If	a	user	decides	to	give	some	additional	information	on	a	sign	by	video	or	text	she/he	is	redirected	to	
a	special	row	with	id=”1183-supp”	(in	this	example)	where	1183	corresponds	to	the	current	page	id	
attribute.	This	is	the	area	to	send	text	answers	or	video	answers	by	webcam.	
	

	 	
Figure	31:	Area	text	&	video	|	row	with	id	1183-supp	(pageid-supp)	

As	you	can	see	in	the	next	screen	the	text-/video	answer	opens	in	the	same	iFrame	of	the	1183-supp	
row.	
	

	
Figure	32:	Video	comment	on	further	meanings	of	a	given	sign	

Project	Note	AP04-2015-01	

41	
	

Finally	we	consider	an	example	where	three	components	are	presented	side	by	side	in	one	row.	
The	three	components	are:	Sign	(left)	|	Text	(middle)	|	Explanation	(right)	
	

	
Figure	33:	Three	side	by	side	components	of	a	single	row	

This	construct	is	reflected	in	the	code	as	follows:	
	

	 	
Listing	32:	The	components	side	by	side	

Project	Note	AP04-2015-01	

42	
	

As	you	can	see	in	the	XML-Comments	inside	the	file	above,	there	are	three	content	blocks	available	
with	different	IDs.	
	
Commit-page,	revise-page,	retract-page	and	help	
In	 addition	 to	 the	 <page></page>	 construct	 there	 are	 four	more	 simple	 areas	 available	 in	 the	 xml	
packidge.	Namely	commit-page,	revise-page,	retract-page	and	help.	
Since	 the	 structure	of	 these	 areas	 is	 very	 simple	we	do	not	have	 to	 regard	 a	 screenshot	 for	 every	
example	 here	 available	 but	 only	 for	 the	 commit	 page	 in	 order	 to	 illustrate	 the	 relation	 to	
aforementioned	concepts.	

	
Figure	34:	Commit	page	

The	commit	page	enables	the	user	to	submit	an	answered	questionnaire	or	to	skip	it.	The	GUI	area	
shows	a	now	familiar	structure	encoded	in	XML	as	follows:	

	
Listing	33:	commit-page	

Project	Note	AP04-2015-01	

43	
	

The	revise	page	is	structured	in	the	same	way.	

	
Listing	34:	revise-page		

The	same	structure	can	be	found	with	the	retract	page.	

	
Listing	35:	retract	page	–	the	same	structure	as	the	previous	examples	

Project	Note	AP04-2015-01	

44	
	

Help	area	
Whereas	 the	 aforementioned	 structures	 are	 quiet	 identical	 the	 help	 area	 of	 the	 package	 file	 is	
structured	in	a	different	way.	As	you	are	probably	aware,	the	help	area	comes	in	two	flavours	in	the	
GUI:		
Help-videos	and	help-texts.	Compare	Figures	35	and	36.	The	help-area	starts	with	<help>	tag	inside	
the	XML	code.	
	

	
Figure	35:	Video	based	help	area	in	the	frontend	GUI	

	

	
Figure	36:	Text-based	help	in	the	GUI	

	
	
In	order	to	become	aware	of	how	to	place	new	help	components	for	a	packidge	let	us	have	a	glimpse	
on	the	corresponding	code	that	is:	

	
Listing	36:	Help	tag	in	a	packidge	file	

Project	Note	AP04-2015-01	

45	
	

As	you	can	see	the	help	contents	are	only	references	to	a	corresponding	content	id	in	the	“help.xml”	
file.	The	 real	 contents	available	 for	a	usergroup	 (role)	are	defined	 in	 the	“help.xml”	 file	 in	 the	 role	
directory	itself.	
	
	

8.3	Metadata	related	questionnaires	(Additional	features	by	examples	/	Regular	
Expressions	I)	
In	 contrast	 to	 content	 related	 questionnaites	 that	 reside	 inside	 the	 packidge-directory	 these	 are	
stored	 in	 the	 role	 folder	 so	 that	 the	 profiles	 can	 be	 defined	 in	 dependency	 of	 the	 roles	 (i.e.	 in	
different	languages).	

8.3.1	packidge.CHANGE_PROFILE.xml	(User	profile	change)	

Metadata	 related	 questionnaires	 became	 introduced	 in	 chapter	 8.	 They	 handle	 profile-	 and	
registration	master	file	data.	Although	the	purpose	is	different	from	a	content	related	questionnaire	
they	have	common	xml	construct.	Technically	all	 the	given	 information	 in	the	previous	chapter	can	
be	adapted	to	the	metadata	related	questionnaires	as	well.		
This	 is	 especially	 important	 because	 content	 related	 packidges	 use	 the	 same	 concepts	 and	
components	 too	 that	 are	 indroduced	 subsequently	 in	 this	 chapter.	 According	 to	 Listing	 37	we	 can	
regard	an	analog	structure	in	regard	to	the	content	related	packidges.	
	

	
Listing	37:	Same	structure	as	always	

Project	Note	AP04-2015-01	

46	
	

Having	a	 look	at	 the	GUI	presenting	 the	user	profile	 change	process	we	 can	 identify	 a	well	 known	
layout	structure	from	the	previous	chapters.		
	

	
Figure	37:	User	profile	change	

Nevertheless	there	are	some	additional	features	that	can	be	presented	at	this	point	that	can	be	used	
in	order	 to	create	new	questionnaires	of	any	 type.	The	 focus	 in	 this	 chapter	 lies	on	 the	usage	and	
integration	of	regular	expressions	that	occur	in	context	of	field	validation	and	consistency	checks.	
Regarding	the	password	change	process	illustrated	by	the	figure	above	we	are	faced	with	a	basic	xml	
structure	as	follows.	

	
Listing	38:	The	“NO”	value	is	prechecked	on	initial	load	of	the	row	

By	changing	the	password	the	application	checks	wheter	the	entered	string	is	valid	in	regard	to	the	
password	security	policy	that	is	implemented	by	a	regular	expression.	
	

	
Figure	38:	String	validation	on	password	change	1	

Project	Note	AP04-2015-01	

47	
	

	
A	regular	expression	 for	validation	and	consistency	checks	 is	 reference	by	the	valutype	attribute	 in	
the	row	tag.	
	

	
Figure	39:	String	validated	successfully	

As	of	listing	39	the	valuetype	has	been	correctly	set	to	“!PASSWORD”	in	this	case.	Please	have	a	look	
at	 chapter	 11	 for	 more	 details	 on	 the	 application’s	 regular	 expression	 definitions	 for	 text	 field	
validation.	

	
Listing	39:	REGEX	–	valuetype	password	

These	definitions	also	define	an	EMAIL	valuetype	that	is	represented	by	the	next	example.	
	

	
Figure	40:	Regular	expression	–	Only	@-sign	is	checked	for	a	valid	email	address	

In	this	case	the	usage	of	an	@-character	is	mandatory	(valuetype	“!EMAIL”).	

	
Listing	40:	Corresponding	xml	/	REGEX	is	evaluated	according	to	the	valuetype	attribute	

	

The	 following	 construct	 represents	 a	 REGEX	 called	 NUMBER	 as	 it	 is	 decribed	 in	 chapter	 11.	 In	
addition	a	maximum	quantity	of	five	digits	are	defined.	How	this	works	is	explained	in	chapter	8.4.1.		

Project	Note	AP04-2015-01	

48	
	

	
Figure	41:	Regular	Expression	–	Integer	Value	–	5	digit	tokens	

A	 further	 available	 regular	 expression	 definition	 commonly	 used	 in	 the	 application	 is	 YEAR	 as	 it	 is	
shown	by	figure	42.	Compare	chapters	8.4.1	and	11.	
		

	
Figure	42:	REGEX	year	

Project	Note	AP04-2015-01	

49	
	

	

	
Figure	43:	Selection	list	

We	 will	 have	 a	 more	 detailed	 look	 on	 regular	
expressions	 in	 context	 of	 the	 PROFILE.xml	
package	 in	 chapter	 8.3.2.	 Before	 that,	 some	
further	GUI	 elements	 are	 introduced	which	 can	
be	used	in	self-created	questionnaires	as	well.	
Taking	a	look	at	figure	43	we	can	see	a	selection	
list	as	it	is	presented	in	the	web	GUI.	
	

	
If	you	like	to	use	your	individual	list	you	have	to	be	geared	to	the	structure	of	the	following	listing.	

	
Listing	41:	Selection	type	exclusive	–	only	one	item	selectable	

Project	Note	AP04-2015-01	

50	
	

In	order	to	make	it	possible	to	let	users	select	only	one	item	per	list	the	options	type	attribute	has	to	
be	 set	 to	 the	 value	 “exclusive”.	 Another	 important	 attribute	 in	 this	 context	 is	 the	 goto-attribute	
which	takes	a	certain	integer	index	as	parameter	value.	This	attribute	is	used	in	order	to	direct	users	
to	a	special	area	of	the	questionnaire	depending	on	a	pre-condition.	This	could	be	in	dependency	on	
a	 certain	 selected	 item	of	a	 list.	 In	 the	 following	 listing	 it	only	makes	 sense	 for	a	user	 to	answer	a	
question	 about	 her/his	 amblyacousia	 if	 the	 value	 “deaf”	 was	 selected	 in	 a	 preceding	 step	 for	
example.	

	
Listing	42:	Row	index	is	incremented	/	use	of	the	goto	attribute	as	link	

The	goto	attribute	references	rows	that	are	presented	depending	on	the	preceding	selections.	In	the	
case	of	goto=”3”	in	this	example	the	user	is	aked	to	enter	her/his	age.	
	

	
Figure	44:	Example	of	goto=”3”	/	REGEX	AGE	

Project	Note	AP04-2015-01	

51	
	

As	mentioned	before	 this	 is	when	 regular	expressions	 come	 into	play.	 In	 case	of	 figure	 44	an	AGE	
value	is	checked	for	consistency.	Please	note	that	the	valuetype	in	listing	42	is	of	type	AGE.	Compare	
chapter	11.	
In	 addition	 to	 an	 exlusive	 selection	 list	 that	 has	 been	 discussed	 in	 this	 chapter	 there	 are	multiple	
selection	list	available	for	Feedback	questionnaire	development.	One	example	is	presented	in	figure	
45	where	two	items	have	been	checked	at	the	same	time.	
	

	
Figure	45:	Example	of	a	multiple	selection	

This	behaviour	is	implemented	simply	through	omitting	the	type	parameter	in	an	options	tag.	

	
Listing	43:	option	tag	for	multiple	selection	

It	is	also	possible	to	combine	both	types	of	lists.		

	
Figure	46:	Combined	selection	elements	/	exclusive	type	and	non-exclusive	type	

By	adding	the	type=”exclusive”	parameter	to	the	last	option	an	exclusively	selectable	item	becomes	
integrated	in	a	multiple	selection	list.	

	
Listing	44:	Both	list	types	combined	

8.3.2	packidge.	PROFILE.xml	(User	profile	–	Personal	data)	

In	 the	 PROFILE	 questionnaire	 the	 regular	 expression	 construct	 “NAME”	 is	 applied	 in	 the	 following	
way.		

Project	Note	AP04-2015-01	

52	
	

	
Figure	47:	REGEX	–	new	user-	/	nickname	

Thereby	 the	NAME-REGEX	 is	used	 for	different	 types	of	 text	 fields	 such	as	usernames	or	 lastname	
fields	as	follows.	

	
Figure	48:	Last	name	REGEX:	valuetype:	NAME	

The	implementation	of	the	text	fields	contains	the	appropriate	valuetype.	

	
Listing	45:	REGEX	valuetype	NAME	

Every	regular	expression	can	be	used	in	different	contexts.	The	final	example	shows	the	REGEX	YEAR	
this	time	used	for	“year	of	birth”.	

	
Listing	46:	valuetype	YEAR	

8.3.3	packidge.REGISTRATION_PROFILE.xml	(User	profile	–	Registration)	

No	further	xml	constructs	are	occuring	in	this	questionnaire	type.	

Project	Note	AP04-2015-01	

53	
	

8.4	Additional	Features	/	Regular	Expressions	II	
In	order	to	resume	how	to	apply	regular	expressions	on	Feedback	questionnaires	the	INPUT-packidge	
is	presented.	This	package	originates	from	the	software	testing	process	of	Feedback.	By	means	of	this	
package	the	entire	power	of	regular	expressions	in	context	of	the	application	becomes	clear.		

8.4.1	INPUT-packidge	

The	valuetype	attribute	 contains	versatile	occurrences	of	 regular	expressions	 that	 can	be	useful	 to	
verify	 entries	 from	 the	 GUI.	 Among	many	 examples	 in	 the	 following	 listing	 there	 are	 text	 specific	
expressions	as	follows:		

	
Listing	47:	Implementation	of	versatile	valuetypes	as	REGEX	XML	attributes	

Project	Note	AP04-2015-01	

54	
	

TEXT	!	text	(single	line)	
TEXT:10	!	minimum	length	10	
!TEXT	!	random	text	duplex	
TEXT:3,3	!	difinite	length	3	
NAME:,20	!	name:	maximum	length	20	
Further	defenitions	can	be	found	in	chapter	11.	

8.4.2	Validation	of	lists,	scale	questions	etc.	

Besides	the	commonly	used	button	based	navigation	there	are	further	row	navigation	elements	that	
can	be	used	in	order	to	answer	questions.	 If	a	question	 is	not	supossed	to	be	anwered	by	a	simple	
“yes”	or	“no”,	questionnaire	developers	have	the	opportunity	to	use	scale	questions.	
The	 application	 provides	 special	 GUI	 elements	 for	 this	 purpose	 that	 can	 be	 seen	 in	 the	 next	
examples.	

	
Figure	49:	Example	of	scale	questions	

In	order	to	create	the	scale	in	figure	49	a	developer	has	to	implement	a	questionnaire	scale	element	
by	defining	row	of	type=”scale”	according	to	listing	48.	
	

	
Listing	48:	Implementation	of	row	type	scale	

A	developer	 is	 free	 in	her/his	choice	which	 icons	 to	use	 for	 the	scale.	 In	 the	Feedback	context	 it	 is	
also	possible	to	use	smiley	icons	as	follows.	

	
Figure	50:	Another	smiley	scale	/	same	implementation	paradigm	

Project	Note	AP04-2015-01	

55	
	

Depending	on	the	row	type	different	 layouts	and	semantical	constructs	can	be	 implemented	 into	a	
packidge.	Further	row	types	are:	
-	buttons	

	
Listing	49:	Buttons	type	

-	value	

	
Listing	50:	row	type	value	

-	video-and-text	

	
Listing	51:	Video	and	text	type	

-	options	

	
Listing	52:	Options	type	

Project	Note	AP04-2015-01	

56	
	

9.	Answered	questionnaires	as	results	

When	a	questionnaire	has	been	answered	completely	the	global	page	attribute	„status“	is	set	to	the	
“committed”	value.	This	is	when	the	resulting	file	becomes	available	for	evaluation	in	iLex.	According	
to	the	example	of	packidge75.xml	in	chapter	8.2	the	following	results	become	available.	
	

	
Listing	53:	processed	attribute	

As	listing	53	shows	each	page	inside	a	packidge	has	a	“processed”	attribute.	That	is	why	a	user	is	able	
to	stop	and	to	resume	the	answering	process	of	a	questionnaire.	On	commitment	of	the	packidge	a	
timestamp	is	set	and	the	status	becomes	“committed”.	
Having	 a	 deeper	 look	 at	 a	 single	 processed	page	 (processed=“true“)	we	become	aware	 that	 every	
page	of	the	result	document	also	consists	of	contents,	comments	and	rows	as	is	is	the	case	with	the	
initial	packidges	that	have	been	considered	in	the	previous	chapter.	
Comments	are	now	(after	processing)	referenced	by	unique	IDs	in	order	to	link	to	ressources	in	the	
file	system	(i.e.	jpg,	webm).	That	is	because	the	comment	files	itself	are	stored	seperately	inside	the	
user-directory.	

	 	
Listing	54:	A	single,	processed	page	

Project	Note	AP04-2015-01	

57	
	

	
The	comment	in	the	listing	above	is	page-global	whereas	the	next	example	illustrates	the	deposition	
of	comment	data	in	the	filesystem	of	a	user	by	a	so	called	“ID-suppl	row	comment”.	This	is	the	kind	
of	comment	that	can	be	made	in	order	to	add	some	additional	information	on	the	usage	of	a	special	
sign.		
According	 to	 chapter	 8.2	 the	 concrete	 example	 of	 row	 id=”1183-supp”	 here	 corresponds	 to	 the	
<page>	id	attribute	1183	of	the	current	page.	

	
Figure	51:	Making	a	video	answer	inside	the	–supp	id	area	of	the	corresponding	xml	

The	files	of	the	video	answers	are	stored	in	the	user’s	individual	directory,	too	-	together	with	unique	
IDs	 in	 their	 filenames.	 If	 the	 user’s	 answer	 is	 just	 text-based	 the	 text	 becomes	 stored	 inside	 the	
resulting	packidge.xml	file	itself.	That	is	why	the	package	is	called	a	package.	It	is	all	packed	together	
in	one	file	for	further	operating	in	iLex.	
The	next	listing	gives	an	insight	into	how	the	video	comments	are	stored	into	the	file	system	and	get	
referenced	by	the	result	packidge.xml	(1183-supp).	

	
Listing	55:	The	src	attributes	are	referencing	file	system	resources	

The	referenced	files	are	stored	in	the	user’s	directory	as	follows:	
	

	
Figure	52:	Resourses	in	the	file	system	

Project	Note	AP04-2015-01	

58	
	

Among	these	files	the	referenced	data	can	be	found.	
sven.berding.standard-75-2-4-1418816764005.jpg	(Preview	image)	
sven.berding.standard-75-2-4-1418816764005.webm	(Video	comment)	
Comments	are	available	for	pages	on	a	global	level	or	as	we	can	see	here	as	further	information	on	a	
sign.	The	third	occurance	of	a	comment	can	be	found	on	the	commit	page.	
Having	a	detailed	 look	on	a	simple	row	we	become	aware	of	how	the	resulting	packidge	file	marks	
the	certain	user’s	button	clicks.	Depending	on	the	button	selected	by	the	user	the	xml	code	contains	
a	boolean	marker.	If	a	button	was	selected	(i.e.	the	YES	button	in	the	following	example)	an	attribute	
„selected“	becomes	added	to	the	button	tag	and	is	set	to	true.	
If	a	button	is	not	clicked	at	all	this	attribute	is	missing.	
	

	
Listing	56:	Buttons	

Considering	 the	 evaluation	 of	 a	 question	 dealing	 with	 the	 knowledge	 of	 a	 sign,	 we	 can	 find	 the	
identical	way	of	processing	boolean	expressions	(cf.	listing	57).	The	button	with	the	icon	SIGN_USED	
holds	an	attribute	„selected“	that	was	set	to	true	as	follows:	

	
Listing	57:	Boolean	was	set	to	true	here	as	well	! 	selected=“true“	

Even	if	there	are	further	content	blocks	 in	a	row	the	button	handling	remains	the	same	as	you	can	
see	in	the	following	code	snippet.	
	

	 	
Listing	58:	Identical	button	evaluation	

Project	Note	AP04-2015-01	

59	
	

The	revise	page	remains	untouched	in	the	result	document.	There	is	no	user	information	added	here.		

	
Listing	59:	revise	page	stays	the	same	

In	order	 to	present	 the	status	of	 the	commit	page	a	“processed”	attribute	becomes	available	here	
too.	Please	note	the	occurrence	of	the	comment	section	at	this	point	(Listing	60).		
	

	
Listing	60:	Commit	Page,	Processed=“true“	

The	retract	page	stays	untouched	after	processing	as	well:	

	
Listing	61:	retract	page	

Project	Note	AP04-2015-01	

60	
	

10.	Help	pages	

In	this	documentation	the	help	page	topic	has	already	been	touched	here	and	there.	In	this	chapter	
we	have	 a	quick	 look	 at	 the	details	 of	 how	 to	build	 your	own	help	 files.	As	mentioned	before	 the	
“help.xml”	file	is	the	central	file	for	creating	own	help	contents.	These	contents	can	be	created	inside	
the	role	directory	in	order	to	create	help	contents	for	a	specific	group	of	users.	These	help	contents	
can	be	referenced	from	the	packidges	selectively.	
The	help.xml	is	structured	as	follows:	
<help>
 <content id='overview' type="multimedia" hratio="640" vratio="480">
 <image src="http://feedback.sign-lang.uni-hamburg.de/Typ1/hilfe_1.png"/>
 <video src="http://feedback.sign-lang.uni-hamburg.de/Typ1/hilfe_1.mp4"/>
 <video src="http://feedback.sign-lang.uni-hamburg.de/Typ1/hilfe_1.webm"/>
 <text>This is an overview help text!</text>
 </content>
 <content id='buttons' type="multimedia" hratio="640" vratio="480">
 <image src="http://feedback.sign-lang.uni-hamburg.de/Typ1/hilfe_2.png"/>
 <video src="http://feedback.sign-lang.uni-hamburg.de/Typ1/hilfe_2.mp4"/>
 <video src="http://feedback.sign-lang.uni-hamburg.de/Typ1/hilfe_2.webm"/>
 <text>This is a help text on button usage!</text>
 </content>
 <content id='video' type="multimedia" hratio="640" vratio="480">
 <image src="http://feedback.sign-lang.uni-hamburg.de/Typ1/hilfe_3.png"/>
 <video src="http://feedback.sign-lang.uni-hamburg.de/Typ1/hilfe_3.mp4"/>
 <video src="http://feedback.sign-lang.uni-hamburg.de/Typ1/hilfe_3.webm"/>
 <text> is a help text on video recording!</text>
 </content>
</help>
Listing	62:	help.xml	

The	help	contents	are	referenced	in	the	packidge.xml	in	the	following	manor:	
	
<help>
<content-ref id='video' />
<content-ref id='buttons' />
</help>
Listing	63:	help	references	in	packidge.xml	

As	we	can	see	 in	 the	previous	example	the	overview	section	of	 the	“help.xml”	 is	not	referenced	 in	
the	listing	63.	So	help	contents	can	be	integrated	selictively	in	the	packidges.	The	order	of	the	items	
in	 the	packidge	web	GUI	 corresponds	 to	 the	order	of	 items	 in	 the	help	 section	of	 a	packidge.	 The	
global	application	help	relates	to	the	order	in	the	help.xml	file.	
Finally	we	will	take	a	look	at	a	concrete	example	of	packidge76.xml	
<help>
<content-ref id="goldener pfad" />
<content-ref id="text gebaerde" />

<content-ref id="antwortknoepfe" />
<content-ref id="kommentar" />

<content-ref id="videoupload" />
<content-ref id="kamera" />

<content-ref id="kamera_firefox" />
<content-ref id="kamera_chrome" />

<content-ref id="abgeben" />
<content-ref id="abmelden" />

</help>
Listing	64:	help	contents	of	packidge76	

Project	Note	AP04-2015-01	

61	
	

This	is	how	the	help	contents	are	integrated	for	productional	use.		

11.	Validation	of	text	fields	

User	entries	are	validated	according	to	the	datatype	mentioned	in	the	XML	valuetype.	
A	datatype	is	defined	in	the	XML	in	the	following	form:	
1.	Name	
2.	optional:	One	or	many	datatype-specific	parameters	in	parenthesis.	
Examples:	
TEXT,	NUMBER,	NUMBER(-100,	100),	REGEX([A-Z]*),	AGE	
Put	 an	 exclamation	 mark	 in	 front	 of	 the	 validation	 type	 in	 order	 to	 query	 a	 value	 twice,	 i.e.	
"!USER_NAME".	
For	multiline	texfields	compare	FREE_TEXT.	
	
Datatypes:	
TEXT:	
Meaning:	random	single-line	text.	
Valid	tokens:	No	restrictions.	
Regular	Expression:	.*	
Parameters:	
0	Parameters:	Any	length	
Example:	"TEXT"	
2	numeric	parameters:	min	length	+	max	length	
Examples:	
"TEXT(,20)"	-->	max.	20	tokens	
"TEXT(5,)"	-->	min.	5	tokens	
"TEXT(1,5)"	-->	between	1	bis	5	tokens.	
	
FREE_TEXT:	Like	TEXT	but	multiline.	
	
NAME:	
Meaning:	one	(Plasce-,	Person-,	or	other)	name.	
Valid	tokens:	Letters	(incl.	umlauts),	digits,	point	and	hyphen.	
Regular	Expression:	[a-zA-ZÀ-ÖØ-öø-ž][0-9a-zA-ZÀ-ÖØ-öø-ž\.\-	']*	
Parameter:	Like	TEXT.	
	
USER_NAME:	
Meaning:	User	name	for	the	Meine-DGS-System.	
Valid	tokens:	Letters,	digits,	minus,	underscore,	point,	space,	
apostrophy,	special	letters	of	other	languages/special	characters.	
1.	sign	has	to	be	a	letter	or	a	digit.	
Min-Length:	Three	tokens.	
Speciality:	Will	be	compared	to	a	server-side	user	name.	
Regular	Expression:	[a-zA-Z0-9][a-zA-Z0-9-_\\.]{2,}	
Parameters:	None.	
	
PASSWORD:	
Meaning:	Password	of	a	user	of	the	Meine-DGS-Systems.	
Valid	tokens:	No	restrictions.	
Mindestlänge:	Six	tokens.	
Regular	Expression:	.*	

Project	Note	AP04-2015-01	

62	
	

Parameters:	None.	
	
EMAIL:	
Meaning:	A	random	Email-Adress.	
Valid	tokens:	has	to	contain	a	@-sign,	no	further	restrictions.	
Min-Length:	Three	tokens.	
Regular	Expression:	.+@.+	
Parameters:	None.	
	
REGEX:	
Meaning:	A	text,	whose	syntactical	structure	is	determined	by	a	regular	expression.	
Valid	tokens:	Depending	on	the	regular	expressioin	that	has	been	added	as	parameter.	
Parameters:	
1	regular	expression:	Determines	the	valid	tokens	/	syntax.	
Examples:	
"REGEX([0-9]{5}"	-->	five-digit	PLZ/ZIP	
"REGEX([A-Z]*)"	-->	Upper	case	letters	without	german	umlauts.	
"REGEX(.*)"	-->	Like	TEXT	
"REGEX(.*{3,10})"	-->	Like	TEXT(3,10),	min.	3,	max.	10	tokens	
	
NUMBER:	
Meaning:	A	random	integer	value.	
Valid	tokens:	Digits,	when	indicated	leading	minus	sign	followed	my	at	least	1	digit.	
Threshold	value:	Depending	on	the	present	parameters.	
Parameters:	
0	Parameter:	random	integer	number.	
Example:	"NUMBER"	
2	numeric	parameters:	Number	between	min	and	max	value	(incl.	both	threshold	values)	
Examples:	
"NUMBER(-100,	100)"	-->	Number	from	-100	to	100	
"NUMBER(,4711)"	-->	Number	up	to	max.	4711	
"NUMBER(100,)	-->	Number	from	min.	100	
	
YEAR:	
Meaning:	A	random	year	date.	
Valid	tokens:	Like	NUMBER.	
Threshold	values:	Dependend	on	the	present	parameters.	
Parameters:	
0	Parameter:	random	year.	
2	numeric	parameters:	Begin	and	end	of	the	time	interval	in	years	related	to	the	current	year.	
Examples:	
"YEAR(-100,	1)"	-->	100	years	ago	until	the	next	year	(relative	to	the	current	year)	
"YEAR(1914,)"	-->	in	1914	years(!)	util	infinity	
"YEAR(-100,0)	-->	1914	(thus:	100	years	ago)	up	to	infinity	
"YEAR(0,20)"	-->	today	up	to	20	years	
	
AGE:	
Meaning:	a	statement	of	age.	
Valid	tokens:	Digits.	
Threshold	values:	From	0	to	120	years.	
Parameters:	None.	

Project	Note	AP04-2015-01	

63	
	

12.	Loose	coupling	between	Feedback	and	iLex	

In	order	to	access	the	Feedback	components	of	iLex	it	is	nescessary	to	activate	the	Feedback	module	
inside	 of	 iLex	 first.	 Therefore	 the	 checkbox	 "Use	 Feedback	Module"	 has	 to	 be	 checked	 under	 the	
following	path:		
iLex	-->	Preferences	-->	Feedback	-->	Use	Feedback	Module	
The	components	that	are	in	focus	of	the	following	chapters	are	located	under	the	“Data”	menu	item.	
These	are	

• Feedback	Packages	
• Feedback	Requests	
• Under	 “Parameters”	 the	 items	 starting	with	 the	 "Feedback"	 prefix.	 These	 are	 the	 point	 of	

access	to	the	user	management,	system	packages,	movie	assets	etc.	
Please	 note:	 If	 some	 changes	 have	 been	made	 to	 Feedback	 artefacts	 or	 if	 they	 are	 newly	 created	
inside	of	iLex	they	are	not	available	for	Feedback	until	Data --> Deploy Feedback	has	been	
executed	or	an	automatic	deployment	has	been	configured.		
Disambiguation	
In	 context	 of	 the	 terms	 "pages"	 and	 "rows"	 that	 have	 been	 introduced	 throughout	 this	 book	 the	
terms	 "request"	 and	 "request	 item"	 are	 used	 in	 the	 following	 sections	 in	 order	 to	 describe	 the	
identical	concept	from	an	iLex	point	of	view.	
In	 the	 following	 context	 the	 term	 "request	 level"	 means	 the	 level	 of	 a	 Feedback	 page	 whereas	
"request	item	level"	refers	to	the	Feedback	row	concept.	
As	 we	 are	 aware	 the	 feedback	 system	 is	 a	 server-side	 web	 app	 running	 under	 Tomcat	 that	
autonomously	 stores	 its	 data	 (in	 XML	 format)	 in	 the	 server’s	 file	 system.	 Integration	 with	 the	
database-centered	iLex	is	achieved	by	running	an	iLex	instance	that	has	access	to	the	Tomcat	server’s	
file	system,	regularly	running	a	batch	that	both	collects	data	from	the	feedback	system	and	delivers	
new	data	to	be	used	by	the	feedback	system	while	the	feedback	system	is	running.	
The	 feedback	 system	 delivers	 packages	 (called	 “packidges“)	 to	 the	 user	 (cf.	 chapter	 2	 -	
Disambiguation).	 Each	 package	 contains	 several	 pages,	 each	 of	 which	 typically	 consists	 of	 several	
“rows”.	A	row	is	to	be	answered	by	the	user,	e.g.	by	clicking	a	button.	Typically,	lots	of	packages	are	
created	following	the	same	template	(questionnaire	type).	Packages	answered	by	the	user	are	stored	
in	a	user-specific	directory	on	the	server	(in	an	XML	file	merging	the	answers	into	the	package	data),	
along	with	movies	the	user	has	produced	to	provide	additional	data.	
	

12.1	Feedback	Database	Tables	
In	iLex,	five	tables	contain	all	the	information	to	drive	the	feedback	system	as	well	as	to	register	the	
results:	
	

Project	Note	AP04-2015-01	

64	
	

	
Figure	53:	Entity	relationships	

	
	
feedback_bundles	 items	 correspond	 to	 packidges	 in	 the	 feedback	 system,	 whereas	
feedback_requests	roughly	correspond	to	pages	and	feedback_request_items	to	rows.	
On	the	request	side,	the	feedback_requests	table	is	most	central,	whereas	on	the	results	side	there	is	
only	the	level	of	individual	items,	feedback_items.	
Considering	the	following	table	structure	from	the	iLex	database	we	can	see	the	corresponding	part	
to	the	Feedback	XML	packidges	on	the	web-application	side.	Some	familiar	parts	of	the	packidges	can	
be	 found	 inside	 the	 database	 table	 structure	 here	 such	 as	 the	 “name”	 column	 referring	 to	 the	
<name>	node	inside	the	Feedback	xml.	As	we	will	see	later	on	this	entry	becomes	also	visible	in	the	
iLex	GUI	layout	in	the	context	of	the	Feedback-Package-View.	
	

	
Figure	54:	Feedback_bundles	database	context	

Project	Note	AP04-2015-01	

65	
	

As	we	can	see	in	the	database	context	figure	above	a	single	feedback	bundle	record	is	referenced	by	
its	 id.	 The	 corresponding	 bundle	 entries	 in	 other	 tables	 are	 able	 to	 point	 to	 a	 feedback_bundles	
record	easily	in	that	way.	This	integrates	feedback_requests	records	(which	corresponds	to	pages	in	
the	XML	package)	with	the	feedback_deployments	and	metadata_descriptions.	
	

	
Figure	55:	Feedback_bundles	overview	

The	id	in	the	left	table	overview	is	equal	to	the	id	
of	the	<packidge>	tag	inside	the	packidge.xml.	
	
The	purpose	of	the	default_weight	and	default_	
score	 are	 also	 familiar	 to	 the	 reader	 being	
decribed	in	chapter	5	“The	application	concept”.	
	
The	 code	 column	 contains	 the	 iLex	 code	 (i.e.	
February	month).	 See	 item	 “Feedback	 Pakages”	
in	the	iLex	GUI	for	more	details.	
	

	
As	described	previously	a	feedback_requests	record	references	the	corresponding	feedback_bundles	
(column	 feedback_bundle	 in	 the	 figure	below).	As	we	have	 seen	 in	 fig.	53	before	 there	 is	a	N:0…1	
relationship	between	feedback_requests	and	feedback_bundles	(pages	to	packidges).	In	other	words	
one	xml	packidge	node	can	 contain	multiple	page	nodes	which	 is	 reflected	 in	 Feedback’s	web	GUI	
since	a	packidge	can	be	skimmed	through.	
	
		

	
Figure	56:	feedback_requests	database	table	

Project	Note	AP04-2015-01	

66	
	

As	 the	 id	 column	 in	 the	 fig.	 56	 above	 makes	 clear	 each	 feedback_request	 record	 has	 its	 own	
identifiier.	This	is	namely	the	page	id	from	the	specific	page	node	inside	the	packidge	xml	(i.e.	<page	
id=”1183”	…>)	.	
	
In	 the	 same	way	 a	 bundle	 can	 contain	multiple	 pages	 one	 feedback_request	 can	 contain	multiple	
feedback_request_items	which	are	corresponding	to	rows	inside	the	packidge	xml.	
As	 we	 can	 see	 in	 the	 database	 model	 below	 the	 feedback_request_items	 residing	 inside	 the	
feedback_items	and	the	feedback_votes	table	are	referencing	their	corresponding	record	inside	the	
feedback_request_items	table	by	a	specific	id.	
	

	
Figure	57:	feedback_request_items	in	the	database	

Project	Note	AP04-2015-01	

67	
	

What	is	also	recognizable	is	that	metadata	entries	decribe	the	creation	date,	last	modification	date,	
authors	etc.	of	database	artefacts	overall	tables.	
	

12.2	Results	
	
On	 the	 result	 side	 the	 feedback	answers	are	persisted	 in	 the	 iLex	database	as	well.	The	process	of	
converting	 xml	 data	 result	 packidges	 into	 SQL	 statements	 by	 the	 use	 of	 XSLT13	will	 be	 part	 of	 the	
following	chapter	13.	
First	of	all	 the	 feedback_items	 table	 is	considered.	This	corresponds	 to	 the	 results	of	 the	Feedback	
web-application	fetched	from	the	webapp’s	file-system.	
The	 id	column	 is	used	 for	 the	packidge_id	of	 the	specific	 result	document.	The	Feedback	user	who	
has	answered	the	questionnaire	is	considered	as	an	informant	inside	the	iLex	system	according	to	its	
user	concept.	The	informant	becomes	explicitly	referenced	inside	the	specific	feedback_items	record.	

	
Figure	58:	feedback_items	as	results	

																																																													
13	Extensible	Stylesheet	Language	Transformations	

Project	Note	AP04-2015-01	

68	
	

Since	pages	are	only	a	container	structure	inside	the	packidge	xml	the	row	nodes	are	in	focus	of	the	
xml	 parsing	 and	 processing	 in	 this	 context	 because	 rows	 contain	 the	 real	 data.	 Therefore	 the	
feedback_request_item	column	resides	inside	the	table	for	the	xml	results.	
Please	note	the	occurrence	of	the	already	mentioned	metadata	about	the	creator	and	modification	
status	here	as	well.	

12.3	State	Transitions	
feedback_requests	entities	can	be	 in	a	number	of	different	states.	The	 following	diagram	shows	all	
states	as	well	as	the	possible	transitions	between	these:	

	
Figure	59:	State	transitions	of	feedback_requests	

Project	Note	AP04-2015-01	

69	
	

Downwards	 transitions	 reflect	 the	 regular	 workflow,	 upwards	 transitions	 are	 any	 kind	 of	 repair	
action.	Requests	 in	bundles	can	be	recycled	(i.e.	the	system	duplicates	the	requests	to	be	recycled)	
independent	of	the	state	of	the	bundles.	
The	 states	 are	 implemented	 as	 virtual	 columns	 for	 both	 feedback_bundles	 and	 feedback_requests	
and	are	stored	as:	
	

	
Table	1:	States	overview	

	
For	 feedback_deployments	 and	 feedback_individual_deployments,	 the	 same	 virtual	 column	 exists,	
but	will	only	return	deployed	or	retired.	Compare	to	figure	60	for	deployments	and	to	figure	61	for	
individual	deployments.	
	

	
Figure	60:	feedback_deployments	database	relations	

Project	Note	AP04-2015-01	

70	
	

The	workflow	transitions	have	the	following	functionality	(besides	changing	the	state):	
	

	
Table	2:	Workflow	transitions	

A	 deployment	 to	 individual	 users	 will	 automatically	 be	marked	 as	 inactive	 once	 the	 last	 user	 has	
submitted	the	bundle.	This	may	result	in	an	automatic	update	of	the	bundle’s	status	from	deployed	
to	retired.	
	

	
Figure	61:	feedback_individual_deployments	

Project	Note	AP04-2015-01	

71	
	

Before	a	feedback_bundles	record	is	deployed	into	a	feedback	system	packidge,	additional	checking	
is	 performed.	 feedback_bundles.ready_to_deploy	 not	 only	 checks	 the	 data	 of	 the	 bundle,	 but	 also	
calls	 feedback_requests.ready_to_deploy	 and	 feedback_request_items.ready_to_deploy.	 (This	
checking,	however,	does	not	test	if	the	movie	files	needed	to	view	the	packidge	have	been	delivered	
to	the	http	server.)	In	addition,	a	packidge	cannot	be	deployed	to	a	user	group	more	than	once,	and	
is	not	possible	if	an	individual	deployment	to	a	member	of	that	group	has	already	happened.	

13.	The	XSL	Tranformation	Process		

As	being	discussed	in	the	chapter	before	packidge	xml	documents	are	parsed	and	then	processed	by	
XSL	Transformations.	 In	 this	way	SQL	statements	are	generated	 from	the	relevant	xml	data	entries	
the	user	has	commited	in	the	results.	In	this	way	a	loose	coupling	between	the	Feedback	system	and	
iLex	is	achieved.	
As	 we	 have	 seen	 in	 the	 previous	 chapters	 iLex	 fetches	 the	 xml	 data	 from	 the	 Feedback	 system’s	
webapp	directory	namely,	the	file	system.	
In	 this	 chapter	 a	 general	 reference	 is	 given	 on	 how	 the	 transformation	 works.	 In	 the	 following	
chapter	the	documentation	is	going	to	relate	to	those	concepts	by	showing	the	real	results	inside	of	
iLex.	
The	basic	concept	is	clear:	XSL	Transformations	are	operating	on	the	packidge-XML	data	and	result	in	
in	 SQL	 statements	 that	 are	 excecuted	 in	 order	 to	 populate	 the	 corresponding	 database	 tables	we	
have	considered	in	the	previous	chapter.	
The	following	example	shows	how	the	climbing	up	and	down	in	the	DOM-Tree	of	an	XML	packidge	
result	is	carried	out	in	general.	

13.1	Example	XSL	
Let’s	take	a	look	at	the	following	XSL	Transformation:	
	
<xsl:for-each select="//button[@icon='YES' and
@selected='true']/../../row/button[@icon='SIGN_KNOWN' and @selected='true']/../@id">
INSERT INTO feedback_votes(feedback_request_item,feedback_submission,value) VALUES
(<xsl:value-of select="." />,$1,'SIGN_KNOWN');
</xsl:for-each>
Listing	65:	Example	XSL	Transformation	

Project	Note	AP04-2015-01	

72	
	

A	packidge	 xml	document	 is	processed	 inside	an	 xsl	 for-each	 loop.	 The	XSL	<xsl:for-each>	element	
can	be	used	to	select	every	XML	element	of	a	specified	node-set.	
The	 value	 of	 the	 ‘select’	 attribute	 is	 an	 XPATH14	 expression.	 This	 kind	 of	 expression	 works	 like	
navigating	inside	a	file	system	where	a	forward	slash	(/)	selects	subdirectories.	
In	 this	 case	a	<button>	element	 is	 selected.	The	 selection	matches	all	 buttons	because	 the	double	
slash	(//)	refers	to	all	occurrences	no	matter	on	which	position	the	node	is	placed.	
In	other	words	“//”	selects	nodes	in	the	document	from	the	current	node	that	match	the	selection	no	
matter	where	they	are.	
The	button	tags	itself	have	the	attributes	‘icon’	with	the	value	of	‘YES’	and	at	the	same	time	(logical	
AND)	 an	 attribute	 ‘selected’	 with	 the	 value	 of	 ‘true’.	 This	 states	 the	 basic	 requirement	 for	 the	
selction.	 Compare	 to	@icon	 and	@selected	 in	 listing	 65.	 This	 directly	 refers	 to	 the	 packidge	 xml	
attributes.	
The	following	listing	shows	a	matching	component	inside	a	packidge	xml	result.	
	

	
Listing	66:	Matching	component	inside	a	packidge	xml	result	

By	 having	 a	 further	 look	 on	 the	 XSL	 navigation	 through	 the	 XML	DOM-Tree	 the	 occurrence	 of	 “..”	
shows	the	selection	of	the	parent	of	the	current	node	(XPATH).	
/../../row/button[@icon='SIGN_KNOWN'	and	@selected='true']	
	
Navigates	 up	 the	 DOM-Tree	 to	 the	 parent	 node	 <page>	 in	 order	 to	 reach	 a	 row	 node	 again	
afterwards	that	contains	another	button-construct.	This	 is	characterized	by	an	XPATH	expression	 in	
square	brackets.	
Compare	to	the	next	listing.	
	

	
Listing	67:	button-construct	

																																																													
14	http://en.wikipedia.org/wiki/XPath	

Project	Note	AP04-2015-01	

73	
	

	
In	 this	 case	only	 constructs	 are	 considered	 that	 contain	 a	button	 icon	with	 value	 “SIGN_KNOWN”.	
Furthermore	the	attribute	‘selected’	has	to	be	available	and	containing	the	value	of	‘true’.	
Where	exactly	one	is	located	inside	the	DOM	becomes	clear	by	the	evaluation	of	the	corresponding	
row	id	(/../@id	via	the	parent	node)	for	the	buttons.	
Compare	to	the	listing	above:	row	id=“4002“	inside	packidge	75	refering	to	the	red	marked	button.	

13.2	Generation	of	SQL	statements	for	iLex	
The	following	SQL	statement	is	included	inside	the	xsl	for	each	element	
	
INSERT INTO feedback_votes(feedback_request_item,feedback_submission,value) VALUES
(<xsl:value-of select="." />,$1,'SIGN_KNOWN');

	
Only	these	columns	are	affected	inside	the	feedback_votes	table.	
The	<xsl:value-of>	element	extracts	the	value	of	a	selected	node.	
The	<xsl:value-of>	element	can	also	be	used	to	select	the	value	of	an	XML	element	and	adds	it	to	the	
output.	
This	is	inserted	into	the	feedback_request_item	column.	Compare	the	next	figure.	
The	<xsl:value-of	select="."/>	puts	out	the	current	tag	content.	
In	order	to	make	the	concept	more	demonstrative	 let	us	have	a	 look	at	 the	corresponding	table	 in	
this	context:	feedback_votes.	
The	 fedback_request_item	 value	 inside	 feedback_votes	 record	 points	 to	 a	 certain	
feedback_request_item	id	which	corresponds	to	a	row	id	inside	the	packidge	xml.		
	

	
Figure	62:	feedback_votes	

The	following	figure	illustrates	the	affected	columns	by	the	SQL	statement	that	has	been	discussed.	
	

	
Figure	63:	Affected	columns	in	feedback_votes	

Project	Note	AP04-2015-01	

74	
	

The	resulting	feedback	entry	of	the	user	-	considered	as	a	submission	such	as	“Kenne	ich”	or	“Ja”	is	
handled	 by	 the	 column	 feedback_submission.	 This	 relates	 to	 the	 feedback_submissions	 table	 that	
represents	 the	 user’s	 submissions	 by	 addressing	 them	 with	 a	 unique	 id	 as	 can	 be	 seen	 in	 the	
following	figure.	
	

	
Figure	64:	feedback_submissions	table	

Project	Note	AP04-2015-01	

75	
	

The	 “value”	 column	 in	 feedback_votes	 is	 represented	 by	 the	 ‘SIGN_KNOWN’	 literal	 in	 the	 SQL	
statement.	

14.	Feedback	Configuration	Data	

The	Feedback	web-application	is	provided	with	new	xml	data	by	the	iLex	transcription	environment	
regularly.	 The	 task	 “(Automatically)	 Deploy	 Feedback”	 is	 responsible	 for	 the	 deployment	 of	 the	
generated	 xml	 files	 inside	 Feedback’s	 webapps/packidge	 directory.	 This	 task	 can	 be	 excecuted	
manually	or	automatically.	
In	order	to	get	the	two	applications	communicating	with	each	other	the	XML	standard	seems	to	be	
the	appropriate	solution	on	technical	level.	To	make	the	creation	and	handling	of	questionnaires	as	
comfortable	as	possible	 iLex	contains	many	XML	templates	for	the	creation	of	Feedback	packidges.	
These	templates	come	in	different	flavours	depending	on	their	later	purpose	inside	of	Feedback.	
The	 templates	 can	 be	 basically	 distinguished	 into	 dynamical	 templates	 that	 are	 modularly	 and	
hierarchically	filled	with	content	by	the	staff	and	static	templates	which	have	a	fixed	content.		
Dynamic	templates	are	marked	with	the	prefix	“template.”	in	iLex	whereas	static	templates	contain	
the	prefix	”packidge.”	such	as	“packidge.EXTRA”.	
The	feedback_configurations	are	diagramed	in	iLex	as	follows:	
	

	
Figure	65:	Feedback	Configuration	Data	(feedback_configurations)	

Project	Note	AP04-2015-01	

76	
	

The	purpose	is	to	enable	the	staff	to	create	packages	without	having	knowledge	about	XML	itself.	
An	employee	 is	able	 to	create	packidges	 from	a	 ready-to-go	 feedback_configuration.	This	 refers	 to	
the	mentioned	static	packidges	that	are	characterized	by	hardwired,	static	data	that	don’t	has	to	be	
provided	with	dynamic	components	 like	pages,	 rows,	assets	etc.	Compare	 to	 the	 representation	of	
the	packidge.EXTRA	elements.		
The	“normal“	packidges	whereas	are	bundled	from	Feedback-Requests	that	are	an	entity	component	
in	 iLex	 itself.	 Compare	 to	 chapter	 20.2	 “Bundling	 questions	 as	 a	 package”.	 Packidges	 with	 the	
„template.“-prefix	 (in	 the	 preceding	 figure)	 become	 populated	 in	 that	 way.	 These	 templates	 are	
nested	hierarchically	 (cmp.	Figure	53).	A	questionanire	 template	contains	pages	 (templates),	pages	
contain	rows	(templates)	and	rows	the	real	content.		
Let	us	have	a	deeper	insight	into	the	Feedback	templates	at	this	point	since	this	represents	a	central	
concept	of	the	data	interchange	from	iLex	to	Feedback.	

14.1	Package	Templates	
A	template.packidge	that	can	be	seen	in	the	following	figure	is	an	instance	of	a	special	configuration	
class.	These	classes	are	considered	later	on	(chapter	15).	The	name	of	the	template	package	refers	to	
the	 feedback_proto_bundle	 construct	 (cmp.	 chapter	 16)	 that	 determines	 an	 assignment	 to	 certain	
content	types	in	the	DGS	context	(Type	1,	Type	2a,	Type	2b).	
	

	
Listing	68:	template.packidge	–	German	Type	1	

Project	Note	AP04-2015-01	

77	
	

In	the	listing	above	we	can	see	the	familiar	xml	packidge	structure	as	desribed	in	chapter	7.1	before.	
In	this	case	some	variables	i.e.	for	“$name”	and	“$pages”	are	defined	in	order	to	provide	them	with	
content	dynamically	 from	 the	questionnaire	 creation	process	of	 an	employee.	 The	$pages	 variable	
has	 to	 be	 provided	 with	 the	 appropriate	 page	 template	 (template.page).	 Page	 templates	 in	 turn	
contain	$rows	variables	that	are	provided	with	template.rows	of	the	appropriate	type.	More	on	that	
later	on.	
Initially	 let	us	bring	the	 focus	of	 the	“Processor”	 tab	 in	 the	 iLex	GUI.	This	gives	us	access	 to	 the	xsl	
transformations	 targeted	 on	 the	 evaluation	 of	 the	 feedback-result-xml-files	 of	 the	 corresponding	
type.	
As	described	 in	 chapter	13	 the	XSL	Transformations	are	generating	 the	SQL	 INSERT	 statement	and	
therefore	are	the	interface	between	the	two	applications.	
Since	Feedback	is	not	database-related	a	transformation	of	the	data	has	to	be	done.	Compare	to	the	
following	figure:	
	
	

	
Listing	69:	Processor	XSLT	/	Building	of	SQL	statements	

Project	Note	AP04-2015-01	

78	
	

Other	questionnaire	types	are	derived	from	other	templates	such	as	the	template.packidge	“German	
Type	2a”.	
Technically	there	is	no	difference	between	these	types.	But	regarding	the	content	of	the	packidges	a	
distinction	has	to	be	made.	So	a	different	template	comes	into	play.	

	
Listing	70:	Template.packidge	-	German	Type	2a	

Project	Note	AP04-2015-01	

79	
	

The	XSLT	is	applied	to	„Typ2a“	result	packidges	in	the	same	way	as	“Type	1”	is	handled	by	iLex.		

	
Listing	71:	The	corresponding	XSLT	

Project	Note	AP04-2015-01	

80	
	

The	 third	 type	 is	 the	 template.packidge	 “Type	 2b”.	 In	 relation	 to	 its	 content	 it	 is	 characterized	 by	
regional	 differences	 in	 the	 use	 of	 the	 sign	 language.	 Technically	 it	 makes	 no	 difference	 for	 the	
interface	between	the	two	systems	and	is	handled	in	the	identical	way	described.	
In	order	to	create	template	packages	select	the	following	path:	
Data	-->	Parameters	-->	Feedback	Configuration	Data	-->	+		
Then	select	a	class	(for	special	packages	-	i.e.	info	package,	special	requests	-	use	packidge.EXTRA	or	
create	a	new	template	under	Feedback	Configuration	Classes)	

14.2	Page	Templates	
For	 the	 three	 different	 types	 of	 template.packidges	 there	 exist	 corresponding	 page	 templates	
(template.page).	
This	chapter	shows	how	the	nesting	of	content	 is	carried	out	on	this	 level	 in	order	to	prevent	staff	
from	working	with	xml	directly.	
	

	
Listing	72:	Type	1	

Project	Note	AP04-2015-01	

81	
	

	
	
In	 each	 type	 of	 page	 templates	 a	 $rows	 variable	 can	 be	 found	 which	 acts	 as	 an	 access	 point	 for	
inserting	the	row	contents	containing	the	payload	data.		
	

	
Listing	73:	Type	2a	

Project	Note	AP04-2015-01	

82	
	

	
The	figure	above	(Type	2b)	as	well	as	the	figure	below	(Type	2b)	both	show	the	same	structure	and	
context	of	hierarchically	integration	of	the	xml	contents	into	the	template	structure	in	iLex.	

	
Listing	74:	Type	2b	

Project	Note	AP04-2015-01	

83	
	

	

14.3	Row	Templates	
The	row	templates	contain	inter	alia	the	answer	button	structure	that	has	been	discussed	earlier	and	
represents	the	target	sructure	for	videoset	templates	that	are	provided	with	web-appropriate	video	
streams.	
The	 different	 template	 structures	 enable	 the	 webapp	 to	 give	 some	 additional	 information	 on	 a	
special	use	of	a	sign	for	example.	
		

	
Listing	75:	Type	1	xml	listing	

	
This	 part	 (arrow)	 became	 generated	 from	 the	 videoset	 template.	 When	 the	 process	 “Deploy	
Feedback	“	 is	applied	some	video	streaming	background	 jobs	are	executed	such	as	rendering	to	an	
appropriate	web	based	format.	The	real	path	urls	are	injected	by	the	videoset	template.	
	

	
Listing	76:	Feedback	class	videoset	

Project	Note	AP04-2015-01	

84	
	

	
Having	a	look	at	the	next	listing	of	the	template.row	“German	Type	1,	Forms	and	Readings”	one	can	
discover	the	relations	to	the	xml	listing	76	above	as	follows:	
$id	of	listing	77	becomes	provided	by	the	context.	
$text_prompt:	 is	 called	 "Dargestellter	 Text"	 in	 the	UI	 and	will	 be	 provided	with	 literal	 text	 for	 the	
current	 sign	 such	 as	 „Tier“	 for	 page	 topic="123:	 TIER4-$SAM".	 Compare	 the	 next	 listing	 77.	
<videoset>	correlates	to	the	xml	in	listing	76.	
	

	
Listing	77:	$variables	in	an	xml	template	

	
As	an	example	for	“German	Type	1,	Sign	“	we	consider	the	following	row	template	construct.	
	

	
Listing	78:	German	Type	1,	Sign	

Project	Note	AP04-2015-01	

85	
	

	
And	its	XML	representation	in	the	final	xml	package	which	makes	their	relation	more	obvious.	
	

	
Listing	79:	XML	representation	in	the	final	xml	package	

	
These	button	constructs	for	example	represent	the	real	data	which	is	used	by	xsl	when	an	answered	
questionnaire	is	returned	to	iLex	by	a	user	commitment.		
To	make	the	picture	complete,	let	us	have	a	look	at	the	two	remaining	types	of	row	templates	which	
are	“German	Type	2,	Form	for	one	Reading”	and	“German	Type	2b,	Group	Item”.	
	

	
Listing	80:	German	Type	2,	Form	for	one	Reading	

Project	Note	AP04-2015-01	

86	
	

Although	 each	 template	 is	 different	 from	 a	 content	 related	 point	 of	 view	 they	 follow	 the	 same	
technical	conception	as	their	predecessors.	
	

	
Listing	81:	German	Type	2b,	Group	Item	

Project	Note	AP04-2015-01	

87	
	

14.4	Static	Templates	
We	only	have	considered	dynamic	 templates	 so	 far	but	as	already	mentioned	 there	are	also	 static	
templates	 in	 use	 that	 are	 representing	 metadata	 questionnaires	 inside	 the	 Feedback	 system	 (cf.	
metadata-related	questionnaires	in	chapter	8.3).	
First	of	all	let’s	have	a	look	at	the	static	packidge.EXTRA	templates	that	are	sent	out	to	the	Feedback	
system	without	adapting	their	contents.	In	this	case	the	Feedback-Tutorial	package	is	considered.	
	

	
Listing	82:	The	static	packidge.EXTRA	template	

Project	Note	AP04-2015-01	

88	
	

As	we	 become	 aware	 the	 <page></page>	 node	 constructs	 are	 already	 contained	 in	 this	 structure.	
They	do	not	have	to	be	filled	with	content	since	they	already	are	ready	to	be	sent	out	to	Feedback.	
For	technical	reasons	there	are	also	some	variables	 inside	this	structure	because	this	 is	a	template.	
However	 these	 variables	 are	 not	 content	 related	 which	 is	 a	 big	 difference	 to	 dynamically	 filled	
templates	we	already	considered.		
The	same	issue	we	can	consider	with	the	REGISTRATION_PROFILE.	
	

	
Listing	83:	REGISTRATION_PROFILE	template	

Project	Note	AP04-2015-01	

89	
	

The	REGISTRATION_PROFILE	is	the	registration	packidge	for	self-registering	standard	Feedback	users	
that	come	from	the	web	frontend.		
One	can	also	find	static	templates	i.e.	RENAME	for	users	from	the	project	or	employee	context	that	
don’t	have	to	register	themselves	manually	in	Feedback.	
The	user	category	template	is	a	small	snipped	for	the	xml	configuration	file	for	personal	packages	(cf.	
chapter	5.3).	
	

	
Listing	84:	User	category	

14.5	feedback_configurations	DB-Table	
This	database	item	glues	all	the	components	together	on	the	iLex	side.	Being	a	configurations	table	
this	 relation	 is	 the	central	point	where	components	are	coming	 together.	Pages	become	combined	
with	 bundles	 under	 consideration	 of	 the	 specific	 classes	 that	 are	 responsible	 for	 a	 validity	 check	
against	an	xml	schema.	Furthermore	templates	are	associated	with	feedback_proto_bundles	(Type	1,	
Type	2a	or	Type	2b).	
The	 result	 is	an	 iLex	configuration	 that	allows	 the	application	 to	generate	 the	appropriate	XML	 for	
Feedback	questionnaires.	

	
Figure	66:	feedback_configurations	

Project	Note	AP04-2015-01	

90	
	

15.	Feedback	Configuration	Classes	

The	 Feedback	 configuration	 classes	 consider	 an	 XML	 schema	 as	 a	 class	 in	 an	 object	 oriented	
approach	because	the	schema	itself	determines	exactly	what	the	object	instance	may	contain.	
	
	

	
Figure	67:	Feedback	Configuration	Classes	

As	 we	 can	 see	 in	 the	 figure	 above	 there	 are	 many	 different	 types	 of	 configuration	 classes	
(feedback_configuration_dimensions)	 each	 following	 the	 basic	 structure	 of	 the	 according	 database	
table.	
	

	
Figure	68:	feedback_configuration_dimensions	

Project	Note	AP04-2015-01	

91	
	

By	 considering	 the	 table	 we	 notice	 the	 xml_schema	 reference	 as	 a	 column.	 This	 points	 to	 a	 xml	
schema	 implementation	 such	 as	 for	 the	 user	 category	 template.	 In	 order	 to	 keep	 the	 example	 as	
simple	as	possible	this	listing	seems	to	be	appropriate.	
	

	
Listing	85:	XML-Schema	

Please	note	–	 the	schema	validation	process	checks	 for	 the	occurrence	of	 the	mandatory	attribute	
“id”	inside	the	“user-category”	xml	element.	
The	next	figure	shows	the	representation	of	the	editor	functionality	in	the	iLex	GUI.	
	

	
Listing	86:	feedback	configuration	class	for	user	category	template	

16.	Feedback	Proto	Bundles	

The	 feedback	proto	bundles	are	part	of	 a	 feedback	 configuration	and	determine	a	 content-related	
correlation	to	a	certain	questionnaire	type	such	as	“Type	1,	Type	2a,	Type	2b”.	
	

	
Figure	69:	Feedback	Proto	Bundles	

Project	Note	AP04-2015-01	

92	
	

The	above-mentioned	correlation	between	proto	bundles	and	feedback	configurations	on	database	
level	becomes	illustrated	as	follows.	
	

	
Figure	70:	feedback	proto	bundles	table	

The	editor	screen	in	iLex	for	the	proto	bundles	is	shown	by	the	following	figure.	
	

	
Figure	71:	editor	screen	in	iLex	for	the	proto	bundles	

Project	Note	AP04-2015-01	

93	
	

17.	Feedback-Assets	

feedback_assets	 for	videos	 in	packidge	and	template	feedback_configurations	are	the	places	where	
to	specify	the	video	snippet	to	be	shown	as	well	as	the	corresponding	poster	(cmp.	Figure	73).	
N.B.:	 If	 you	 reference	 videosets	 in	 the	 feedback_configurations	 xml	 data,	 new	 feedback_assets	
records	are	not	created	automatically.	Use	 the	gear	menu	 in	 the	Feedback	Assets	window	to	have	
iLex	 create	 extra	 assets	 to	 match	 all	 references.	 Likewise,	 assets	 not	 (no	 longer)	 needed	 are	 not	
purged	automatically,	but	they	clearly	become	visible	in	the	Feedback	Assets	list	as	having	uses=0.	
Feedback	Assets	are	 the	 transcribed	video	ressources	 that	are	generated	 from	a	HD	source	 file	 for	
web	requirements	(file	size,	streaming	appropriate).	As	the	next	figure	shows	we	are	able	to	look	up	
in	which	template	packages	which	videos	become	used	(“Uses”	tab).		
	

	
Figure	72:	Feedback	Assets	

Project	Note	AP04-2015-01	

94	
	

The	 integration	 of	 the	 assets	 into	 the	 general	 application	 context	 shows	 the	 database	 relations	
below.	

	
Figure	73:	feedback_assets	table	

Project	Note	AP04-2015-01	

95	
	

An	 asset	 becomes	 automatically	 created	 if	 a	 video	 entry	 has	 been	 added	 to	 the	 xml	 template.	 A	
newly	created	asset	can	also	be	 linked	 to	 the	 template	by	dragging.	A	 frame	 for	 the	still	has	 to	be	
assigned	as	well.	
Feedback	movies	become	newly	produced	 if	 they	aren't	already	present	on	the	server.	 If	Feedback	
movies	are	supposed	to	be	replaced,	the	previous	version	has	to	be	deleted.	

18.	Further	database	tables	for	parameters	

Besides	 the	 already	 considered	 feedback_proto_bundles,	 feedback_configurations	 and	
feedback_configuration_dimensions	there	are	some	further	important	parameter	tables	in	context	of	
the	iLex	database.	
These	tables	are	

- feedback_templates	
- feedback_answer_kinds	

	

	
Figure	74:	feedback	templates	table	

Project	Note	AP04-2015-01	

96	
	

As	we	can	see	here	the	templates	itself	have	an	equivalent	inside	the	database,	too.	Please	note	the	
relationship	between	a	feedback_request	and	a	feedback_template	(N:1	–	Figure	53).	
The	feedback_answer_kinds	are	illustrated	as	follows.	
	

	
Figure	75:	feedback_answer_kinds	

Project	Note	AP04-2015-01	

97	
	

19.	iLex	and	Feedback	users	and	groups	

The	group	concept	in	iLex	does	not	completely	match	with	the	roles	in	the	feedback	system.	Instead,	
several	 feedback_groups	 may	 share	 a	 path	 name	 which	 corresponds	 to	 the	 role	 name	 in	 the	
feedback	 system.	 One	 of	 these	 groups	 sharing	 a	 path	 is	 the	 primary	 group	 defining	 the	
feedback_levels	applicable	for	all	groups	with	this	path.	Also,	there	must	not	be	more	than	one	group	
per	 path	 that	 allows	 self-registration.	 However,	 this	 need	 not	 be	 the	 primary	 group.	 Use	 several	
groups	sharing	the	path	value	if	you	want	to	mix	pre-registered	participants	with	people	registering	
themselves	in	order	to	have	a	shared	high-score	list.	
The	feedback_group_memberships	records	contain	the	user’s	nickname	(and	it	is	ok	to	change	that	in	
iLex),	 but	 not	 the	 password.	 Passwords	 are	 only	 stored	 in	 the	 feedback	 system	 itself	 with	 the	
exception	of	the	 initial	passwords	assigned	to	pre-registered	participants	which	 is	derived	from	the	
feedback_group_memberships	record	id.	
Levels	are	one	element	of	the	gamification	approach	taken	in	the	feedback	system.	By	giving	users	a	
target	 to	 reach	 by	 answering	 more	 feedback	 packidges,	 they	 hopefully	 feel	 encouraged	 to	 stay	
engaged.	At	the	same	time,	the	levels	can	be	used	to	make	sure	that	more	difficult-to-answer		
packidges	 are	 not	 delivered	 to	 newbies	 by	 deploying	 same	 only	 more	 advanced	 levels.	
feedback_levels	are	defined	for	each	primary	group	effective	for	all	associated	groups	as	well.	
There	is	no	need,	however,	to	use	distinct	names	for	the	levels	in	each	primary	group.	Thereby	you	
can	define	e.g.	4	levels	appearing	to	all	participants.	
	

	
Figure	76:	feedback_groups	

Project	Note	AP04-2015-01	

98	
	

The	integration	of	the	group	concept	is	illustrated	in	the	figure	above.	The	group_memberships	stand	
in	relation	to	their	groups.		
The	representation	of	feedback_levels	can	be	seen	below.	These	are	meant	to	grant	the	user	access	
to	certain	questionnaires	when	achieving	a	certain	score	limit.	
	

	
Figure	77:	feedback_levels	

	
	

19.1	Mapping	of	groups		
There	 is	 a	 mapping	 mismatch	 between	 the	 usergroups	 of	 iLex	 and	 the	 Feedback	 groups.	 This	
becomes	 more	 obvious	 by	 regarding	 the	 standard	 Feedback	 usergroup.	 On	 the	 iLex	 side	 the	
Feedback	standard	usergroup	for	example	divides	into	three	different	groups,	namely	

• Underage	Users	(Minderjährige)	
• Self-Registering	Users	(Selbstregistrierer)	
• Informants	(Informanten)	

	

	
Figure	78:	Feedback	User	Groups	(Data	! 	Parameters	! 	Feedback	User	Groups)	

If	we	want	to	combine	the	Feedback	standard	group	with	i.e.	a	help.xml	file	from	the	side	of	iLex	we	
have	 to	 choose	 one	 out	 of	 the	 three	 corresponding	 iLex	 groups	 as	 a	 primary	 group	 where	 we	

Project	Note	AP04-2015-01	

99	
	

implement	 the	 association	 to	 the	 help.xml	 file.	 The	 remaining	 two	 groups	 therefore	 become	
secondary	groups.	
	

	
Figure	79:	ROLES	inside	of	the	Feedback	file	system	

The	 next	 figure	 shows	 the	 primary	 group	 “Informants”	 and	 the	 secondary	 group	 “Self-Registering	
Users”.	As	we	can	see,	for	both	groups	a	standard	group	target	for	Feedback	does	exist	in	the	“path”	
selectbox.	The	group	on	the	left	is	marked	as	primary	group	explicitly.	
	
	

	
Figure	80:	Primary	vs.	secondary	group	

Project	Note	AP04-2015-01	

100	
	

The	categorie	 constructs	 -	well	 known	 from	Feedback	 -	are	configured	at	 this	point	as	well.	 This	 is	
why	people	are	able	to	see	certain	questionnaires	only	at	a	certain	score	level.	
	

	
Figure	81:	Feedback	categories	in	iLex	

Usergroup	“Informants”	and	its	members	(excerpt):	
	

	
Figure	82:	Usergroup	“Informants”	and	its	members	(excerpt)	

Project	Note	AP04-2015-01	

101	
	

If	we	choose	one	single	user	from	the	list	above	we	become	aware	that	at	this	point	a	matching	of	
the	usrergroups	has	been	successfully	accomplished.	All	the	iLex	ressources	in	the	infrastructure	are	
now	available	for	the	user.		
	

	
Figure	83:	One	single	user	from	the	list	above	

Summary	
Let’s	 glue	 all	 the	 information	 together	 including	 the	 statements	 from	 chapter	 6.	 In	 the	 Feedback	
system	 the	 following	usergroups	 (roles)	 are	 available:	 standard,	 test,	 admin,	 focus	 and	mitarbeiter	
whereas	 in	 iLex	usergroups	 can	be	 randomly	 created	by	 the	 staff.	 Therefore	 they	have	 to	become	
assigned	 /	mapped	 to	 a	 certain	 Feedback	 group.	 As	we	 have	 seen	 above	 the	 declaration	 is	made	
under	"path".	Respectively	one	iLex	group	is	the	primary	group	part	of	a	Feedback	group.	Here	it	 is	
defined	which	system	packidges	are	available	to	the	whole	Feedback	group.	
Creation	of	new	members	
An	 informant	 can	 possess	 multiple	 Feedback	 identities	 (i.e.	 focus,	 test).	 A	 person	 that	 is	 not	
(supposed	 to	 be)	 created	 as	 an	 informant	 (for	 testing)	 is	 created	 as	 follows:	 Informant	 use	
"Feedback-Test"	 (Data --> Informants --> select Informant --> tab
"Feedback" --> add).	
Select	usergroups	and	the	nickname	(=	username).	The	scores	and	registration	date	don't	have	to	be	
inserted.	You	are	able	to	reset	the	password	at	this	point	as	well.	

19.2	Registration	Procedures	
If	you	want	to	pre-register	someone	for	the	feedback	system,	you	have	to	select	a	nickname	and	a	
group	for	that	person.	
1.	Check	if	the	person	already	exists	in	the	database	as	an	informant.	
2.	If	not,	create	a	new	informant	record	and	fill	in	the	necessary	details.	
3.	Now	switch	to	the	Feedback	tab	in	the	informant’s	detail	window.	
4.	Click	on	“+”	to	create	a	new	feedback	participant.	
5.	Select	the	appropriate	feedback	group	and	type	in	a	nickname.	If	you	really	want,	you	can	also	set	
a	user	score	to	some	non-negative	number	although	that’s	not	really	fair…	
6.	 If	 you	have	assigned	 the	participant	 to	a	group	where	users	a	not	 required	 to	 fill	 in	a	metadata	
questionnaire,	 you’d	 better	 fill	 out	 these	metadata	 records	 yourself	 right	 now	 unless	 you	 already	
have	them	in	the	database	for	an	earlier	participation	in	one	of	your	projects.	
With	the	next	deployment,	the	user	record	is	created	on	the	feedback	server	so	that	the	user	can	log	
in	using	the	nickname	you	have	just	created.	The	password	is	set	to	a	default	(“geheim”	followed	by	
the	id	of	the	newly	created	feedback_group_memberships	record	id)	that	the	user	can	change	at	any	
time.	
7.	Let	the	user	know	about	her/his	nickname	and	password.	
8.	If	you	want	to	give	the	user	the	opportunity	to	change	the	nickname,	create	an	individual		
deployment	of	a	special	rename	questionnaire	to	that	user.	
Users	 registering	 themselves	 via	 the	 Feedback	 system	 should	normally	 be	 asked	 to	 fill	 a	metadata	
questionnaire	 in	 order	 to	 provide	 the	 data	 necessary	 for	 making	 use	 of	 their	 contribution,	 like	
hearing	 status	 and	 region	 they	 are	 from.	 Currently,	 self-registration	 is	 only	 possible	 for	 one	 user	

Project	Note	AP04-2015-01	

102	
	

group.	However,	it	is	possible	to	move	the	participants	to	another	group	once	they	have	registered.	
(One	possible	case	here	is	a	person	whom	you	have	sent	preregistered	account	data	but	who	might	
have	misplaced	these	information	and	uses	self-registration	instead.)	

20.	Representation	of	Feedback	XML	Constructs	in	iLex	

We	already	know	xml	questionnaires	from	the	Feedback	web-application.	They	are	created	from	the	
work	inside	of	iLex.	In	the	figure	below	we	can	see	the	deployed	packages	besides	the	packages	with	
another	status	such	as	“in	test”,	“bundled”	etc.	
	

	
Figure	84:	Selection	area	and	package	views	

Inside	of	iLex	one	is	able	to	choose	other	package	views/filters	in	order	to	change	to	a	more	detailed	
overview	of	the	available	package	bundles.		

	
Figure	85:	Filters	

Project	Note	AP04-2015-01	

103	
	

	
As	can	be	seen	in	the	next	screen	some	new	columns	do	occur	inside	the	table	view	such	as	“score”	
and	“comments”.	

	
Figure	86:	New	columns	inside	the	table	view	

The	actions	that	can	be	taken	are	located	under	the	cogwheel	button.	

	
Figure	87:	Deployment	window	

Project	Note	AP04-2015-01	

104	
	

The	following	actions	can	be	executed	on	feedback	package	items	that	are	bundles:	
• Deployment	for	testing	
• Stop	test	stage	
• Deployment	to	groups	
• Deployment	to	individuals	

From	the	side	of	iLex	an	auto-deployment	is	executed	every	30	minutes.	It	can	be	switched	to	manual	
mode	as	well.	Movies	become	only	newly	produced	if	they	aren't	already	present.	In	order	to	force	a	
newly	production	the	previous	movie	has	to	be	deleted.	
Packages	are	only	produced	in	case	they	are	marked	as	"deployed"	in	iLex.	
The	 window	 in	 figure	 86	 is	 located	 unter	 Data --> Feedback Packages	 and	 offers	 the	
aforementioned	services	under	the	cogwheel	section.	

• Deploy	for	Testing:	The	package	is	deployed	being	selectable	via	the	admin	account	
• Deploy	 to	Groups	 (Stop	 the	 testing	 phase	before):	 Category	 has	 to	 be	 selected	 (scores	

and	weight	usually	by	defaults)		
Please	note:	Type	1	packages	are	deployed	in	Category	B	-	Category	A	for	tutorial	only.	
	 	 iLex	groups	are	described	in	chapter	19.	

• Deploy	to	Individuals:	packages	are	deployed	in	the	personal	category.		
Retirement	of	a	package	
In	order	 to	 retire	a	package	open	 the	Feedback	package	as	 shown,	 then	 switch	 to	 "Deployments",	
open	the	desired	deployment	and	uncheck	"active".	

20.1	–	Example	of	packidge	75		
Refering	 to	 the	 example	 in	 chapter	 8.2	 the	 focus	 was	 on	 the	 xml	 syntax	 of	 Feedback	 packidges	
whereas	 here	we	want	 to	 concentrate	 on	 the	 representation	 of	 the	 corresponding	 xml	 constructs	
inside	 the	 iLex	 GUI.	 Before	 the	 packidge	 75	 was	 available	 for	 Feedback	 the	 xml	 was	 created	 and	
bundled	here.	
The	data	 record	 ID	75	 is	opened	under	“Feedback	Packages”	 in	 relation	 to	 the	example	of	chapter	
8.2.		

	
Figure	88:	Data	record	ID	75	

Project	Note	AP04-2015-01	

105	
	

By	opening	the	specific	data	record	75	we	become	able	to	edit	its	configurations	such	as	name,	code,	
scores,	weight	etc.		

	
Figure	89:	View	of	Feedback	packidge	75	-	Description	tab	

There	are	different	possible	xml	configurations	we	can	select	which	is	nothing	else	than	the	template	
feedback	packages	discussed	in	chapter	14.	
	

	
Figure	90:	Possible	configurations	according	to	type	1,	2a	or	2b	

	
Now	we	 switch	 to	 the	 questions	 of	 packidge	 75.	 The	 iLex	 type	 „TIER4-$SAM“	 corresponds	 to	 the	
assignment	 of	 the	 “topic”	 xml	 attribute	 of	 the	 page	 tag	 (question	 123:	 TIER4-$SAM)	 inside	 the	
packidge	as	can	be	seen	in	the	next	listing.	
	
	

	
Listing	87:	Packidge	75	–	topic	123	

Project	Note	AP04-2015-01	

106	
	

	
The	 xml	 entry	 above	 originates	 from	 the	 Feedback	 Request	 entry	 shown	 in	 the	 figure	 below.	 It	 is	
semantically	 integrated	 into	 the	 whole	 iLex	 infrastructure.	 This	 makes	 it	 possible	 to	 reference	 a	
special	semantic	meaning	behind	a	sign	(reading).	
	

	
Figure	91:	Packidge	75	-	Requests	

In	order	to	illustrate	the	benefit	of	the	integration	of	Feedback	requests	into	iLex	the	next	screenshot	
shows	a	detailed	view	of	a	Feedback	request	inside	of	iLex.	

	
Figure	92:	View	of	a	single	Feedback	request	

Project	Note	AP04-2015-01	

107	
	

Besides	the	metadata	we	can	determine	a	certain	type	for	a	request	as	well	as	the	priority.	
The	next	figure	shows	items	of	a	Feedback	request	(readings)	each	corresponding	to	a	row	inside	the	
XML	packidge.	N.B.	the	first	record	in	the	GUI	is	a	static	row	residing	inside	the	packidge.	Therefore	
no	request	entry	occurs	in	the	list.	
	

	
Figure	93:	Elements	of	a	Feedback	request	

An	 explicit	 item	 from	 the	 screen	 above	 can	 be	 selected	 and	 edited	 in	 the	 following	 window.	 For	
example	 the	 “answer	 kind”	 and	 the	 presented	 text	 such	 as	 „Tier“	 (text	 prompt).	 Furthermore	 the	
type	(here:	Tier4-$SAM)	can	be	assigned	to	the	question.		
	
	

	
Figure	94:	Details	to	a	Feedback	question	/	request	

Project	Note	AP04-2015-01	

108	
	

Depending	 on	 the	 desired	 answer	 button	 structure	 different	 button	 options	 can	 be	 selected.	 This	
selection	determines	the	building	of	the	row	components	of	an	xml	packidge.	
	

	
Figure	95:	Answer	options	in	a	detailed	Feedback	question	view	

Under	 the	 hood	 we	 are	 binding	 here	 to	 the	 whole	 iLex	 infrastructure	 and	 are	 now	 able	 to	 use	
services	 such	 as	 HamNoSys	 notation	 access	 up	 to	 services	 on	 meanings	 and	 readings	 of	 a	 sign	
(Compare	to	the	next	screenshot).	

	
Figure	96:	The	meaning	of	a	sign	in	form	of	a	concept	

	

20.2	Bundling	questions	as	a	package	
	
We	can	bundle	multiple	requests	together	as	a	package	for	Feedback	benefiting	from	the	template	
mechanism.	 The	 staff	 only	 has	 to	 select	 the	 desired	 questions	 for	 a	 package	 and	 then	 choose	 the	
option	“Bundle	as	a	Package”	in	the	upper	right	corner	of	the	screen.	
	

	
Figure	97:	Bundling	of	a	package	

Project	Note	AP04-2015-01	

109	
	

21.	Return	of	questionnaires	

	
Let	 us	 get	 one	 more	 step	 into	 detail	 by	 regarding	 the	 representation	 and	 access	 to	
returned/answered	questionnaires	in	iLex.	In	the	picture	below	the	Feedback	packidge	75	is	selected	
again	in	order	to	illustrate	the	handling	of	returned	packidges.	

	
Figure	98:	Feedback	packidge	75	questionnaire	

In	the	deployment	overview	screen	there	is	the	button	“Results”	which	gives	access	to	the	returned	
questionnaires	committed	by	the	users.	
	

	
Figure	99:	Results	tab	

We	select	one	single	returned	packidge	for	a	more	detailed	view.	
	

	
Figure	100:	Feedback	Deployment	-	Results	

Project	Note	AP04-2015-01	

110	
	

This	leads	us	to	the	returned	xml	data	in	raw	format.	This	is	the	well	known	xml	packidge	data	from	
the	previous	chapters.	

	
Listing	88:	Detailed	view	

The	 xml	data	 contains	 i.e.	 video	answers	 from	users	 giving	more	 information	on	 the	meaning	of	 a	
sign.	In	the	following	snippet	we	can	see	the	source	paths	for	a	video	answer	as	well	as	a	generated	
preview	image.	

	
Listing	89:	Video	contribution	

The	contributed	videos	are	available	in	the	“Movies”	section	in	the	iLex	GUI.	This	makes	the	handling	
of	the	data	a	lot	easier	than	only	relating	to	the	xml	data.	
	

	
Figure	101:	The	video	is	referenced	here	

Project	Note	AP04-2015-01	

111	
	

In	the	“Votes”	tab	we	see	the	collected	votes	of	a	user	in	relation	to	a	whole	packidge.	In	the	“Type”	

column	 the	 sign	 name	 is	 combined	 with	 the	 user	 answer	 including	 video	 comments	 as	 well	 (cf.	

Bottom	of	fig.	102).		

	
Figure	102:	The	votes	incuding	the	videos	im	webm	

Project	Note	AP04-2015-01	

112	
	

22.	Representation	of	results	from	a	type	point-of-view	

Referring	 to	 the	example	of	packidge	75	again	 the	user	 answers	are	 considered	here	 from	an	 iLex	
point-of-view.	As	you	can	see	in	the	following	screen	the	iLex	list	of	Feedback	Bundle	75	is	sorted	by	
types.	The	types	are	aggregated	in	the	“Results”	tab.	Here	the	type	“TIER4-$SAM”	is	in	focus	again.	In	
the	next	window	this	type	becomes	related	to	all	the	votes	that	have	been	sent	back	to	iLex	from	all	
users.	
	

	
Figure	103:	Packidge	75	results	overview	

The	result	column	does	also	contain	the	user	comments	to	a	current	type.	
	

	
Figure	104:	user	comments	to	a	current	type	

Project	Note	AP04-2015-01	

113	
	

If	you	like	to	find	out	i.e.	who's	the	author	of	a	special	comment	follow	these	steps:	
1.	Drag	the	desired	row	on	the	notepad.	
2.	New	query:	select * from feedback_votes where id=55481*	 (id	available	on	the	
notepad),	*all	numbers	have	to	be	adapted	individually	of	course	
3.	New	query:	select * from feedback_submissions where id=1170*	 (id	available	
in	the	preceeding	query	result	under	feedback_submission)	
4.	 New	 query:	 select * from feedback_group_memberships where id=41	 (id	
available	in	the	preceeding	query	result	under	feedback_group_membership)	
->	nickname	becomes	shown	
	
If	you	select	“Movies“	in	the	iLex	menu	and	also	choose	the	”Feedback-Contributions”	filter	you	will	
get	a	list	view	of	all	the	movies	that	have	been	sent	in	by	the	users	during	the	answering	process	of	
questionnaires	in	Feedback.	
	

	
Figure	105:	Feedback	movies	

Project	Note	AP04-2015-01	

114	
	

	
This	makes	 it	possible	 to	show	detailed	overviews	of	certain	video	comments.	Compare	the	next	2	
screens.	
	

	
Figure	106:	Info	on	a	certain	video	comment	that	has	been	returned	to	iLex	

Following	this	paradigm	the	video	comment	becomes	entirely	integrated	into	the	iLex	infrastructure	
and	we	are	able	to	apply	iLex	features.	
	

	
Figure	107:	Tracks	

	
	

